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a Foreword

This report contains copies or reprints of publications made under contract No. N00014-89-
C-0025 funded by the Office of Naval Research, Fluid Dynamics Program under the technical
monitoring of Dr. Edwin Rood. '

It is intended to document the technical achievements accomplished under this contract. In
reverse order of dates, the follov:ring documents are included:

1. G.L. CHAHINE, “Bubble Dynamics and Cavitation Inception in Non-Uniform Flow Fields,”
to appear in Proceedings of the Twentieth ONR Symposium on Naval Hydrodynamics”,
Santa Barbara, CA, August 1994..

2. G.L. CnAnINE, “Bubble Interactions with Vortices,” in “Vortex Flows,” S. GREEN,
ed., to be published by Kluwer Academic, 1994.

3. G.L. CHAHINE, “Cavitation Dynamics at Microscale Level,” Journal of Heart Valve
Disease, vol. 3, 1993.

4. G. DESGRESS DU Lou, T. SARAZIN, AND G.L. CHARINE, “Viscous Interaction Between
Bubble and Line Vortex,” DYNAFLOW, INC. Technical Report, 6.002_15, 1993.

5. Y.L. GUERRIER, “The Motion of a Spherical Body Below a Free Surface,” DYNAFLOW,
INC. Technical Report, 6.002.14, 1993.

6. A. VAN DER BEKEN, R. DURAISWAMI, AND G.L. Cmnms,“Study of Jet Instability
Formation on Free Surfaces,” DYNAFLOW, INC. Technical Report, 6-002-13, 1993.
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10.

11.

12.

13.

14.

15.

S. ZHANG, J. DUNCAN, AND G.L. CHARINE, “The Final Stage of the Collapse of a
Cavitation Bubble Near a Rigid Wall,” J. Fluid Mech., vol. 257, 1993.

G. L. CHAHINE, E. DELEPOULLE, AND P. HAUWAERT, “Study of the Interaction Be-
tween a Bubble and a Vortical Structure,” Proceedings Cavitation and Multiphase Flow
Forum, New York, 1993.

M. REBUT AND G.L. CHAHIM A, ptotic Study of Bubble Dynamics in a Nonuni-
form Potential Flow,” in Proceeds..gs, .i »ME Cavitation and Multiphase Flow Forum, Los
Angeles, 1992.

R.DURAISWAMI AND G.L. CHAHINE, “Analytical study of the interaction a gas bubble
and a line vortex,” in Proceedings ASME Caviiaticn and Multiphase Flow Forum, Los
Angeles, 1992.

G.L. CHAHINE, R. DURAIswaMI, AND M. REBUT, “Analytical an.! Numerical Study
of Large Bubble/Bubble and Bubble/Flow Interactions,” Proceedings of the Nineteenth
ONR Symposium on Naval Hydrodynamics”, Seoul, S. Korea, 1992.

J.B. VILLE AND G.L. CRAHINE, “Asymptotic Study of Bubble Dynamics in a Slightly
Compressible flow,” DYNAFLOW, INC. Technical Report, 6.002.12, 1992.

L. MAUDUIT AND G.L. CHAHINE, “Asymptotic Study of Bubble Cloud Dynamics in the
Proximity of a Body in Potential Flow,” DYNAFLOW, INC. Technical Report, 6.002.11,
1992,

G.L. CHAHINE, R. DURAISWAMI, AND A.N. LAKSHMINARASIMHA, “Dynamical Inter-
actions in a Bubble Cloud,” ASME J. Fluids Engg., vol. 114, 1992.

G.L. CHAHINE, “Dynamics of the Interaction of Non-Spherical Cavities,” in “Mathemat-

ical Approaches in Hydrodynamics, (ed. T. Miloh), SIAM, PHILADELPHIA, PP. 51-67,
1991. Accesion For
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b Summary

The primary focus of the work conducted under this contract is the investigation of the mech-
anism of interaction between bubbles and underlying flows, and of the mutual interaction of
bubbles. The tools developed and the knowledge gained will be useful to us and other re-
searchers and engineers to model and understand the problem of cavitation inception in various
circumstances. This is of relevance to Navy applications where cavitation and bubble dynamics
can generate noise, adversely affect the flow, or negatively impact on the performance. Our
main emphasis during this research program was to develop a description of the dynamics of
strong interactions on the microscale level (the dynamics of bubble nuclei) and its implications
on the macroscale level (cavitation inception, emitted noise).

Since the fine and precise modeling of the overall phenomenon of cavitation is very compli-
cated, and understanding of many of its aspects has confounded scientists and engineers, we
concentrated attention on some relatively simple but practically important flow situations, so
that the basic physics of the problem could be understood. This understanding of the fun-
damental mechanisms is essential to the understanding of more complicated flows involving
bubbles, and allow one to justify or discount assumptions made in other studies of more com-
plex flow situations. We have sought to achieve this goal by using numerical, analytical, and
experimental methods.

Tools which we used and/or developed in this study, and in the computer programs that
have resulted, are based on Matched Asymptotic expansions, axisymmetric and 3-D Boundary
Element Methods (BEM) , and Vortex Element Methods. In addition, in order to study viscous
flow / bubble interactions a simple finite difference code coupled with a Runge-Kutta model
was developed for the axisymmetric problem of bubble / vortex viscous flow interaction.

In this letter report we will not go into the details of our results. These are described in the
various publications (listed in Appendix A) that arose from work on this contract (copies of
the most relevant publications are attached). Instead we will concentrate here on some aspects
of the results, and their implications on future fundamental and/or numerical work and on
applications.
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¢ Bubble Flow Interaction

This section relates to the dynamics of bubble nuclei (cavitation inception) in boundary layers,
shear layers and in vortex flows. After developing the method of approach, particular attention
was given to bubble behavior in vortical flows and close to a boundaries. In all cases sin-
gle and multiple bubble dynamics were considered. Whenever possible comparison was made
with existing experimental evidence or with small scale experiments conducted in parallel at
DYNAFLOW. Specific areas which we have addressed are:

¢ Interaction between multiple bubbles (cloud cavitation)

o Influence of shear and vortical flows on single and multiple bubbles (cavitation in-
ception in boundary layers and trailing vortices)

o The description of large bubble deformation near a submerged body (bubble dynam-
ics near head forms, also applicable to underwater explosion bubble dynamics)

e Development of an asymptotic model of a cavitating bubbly flow.

¢ Bubble capture and behavior in a vortex flow (bubble capture, cavitation, and vortex
flow modification)

c.l1 Bubbles in vortex line-flow
c.1.1 Bubble capture and deformation in a line vortex flow

To study bubble capture and interaction with the viscous flow field of a vortex line or a vortex
ring, a model where the interaction is restricted to the constraint that no additional vorticity
is generated by the bubble dynamics led to the following results:

1. Criteria for bubble capture, and for large bubble deformations during bubble interaction
with a vortex line flow were obtained.

2. Two key parameters on the bubble / vortex interaction appear to be the ratio between
bubble size and “viscous core” size, and the ratio between ambient pressure and the
pressure drop at the vortex center due to the circulation in the vortex.
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3. Prior to bubble capture by the vortex and its centering on the vortex axis, the strongest
shear effects on the bubble occur in the region close the vortex core edge.

4. During strong bubble dynamics (as in cavitation inception conditions) bubble deviation
from spherical shape during bubble growth can be very significant, leading eventually to
jet formation and bubble splitting, and thus to sound emission very close to the inception
region.

5. In strong vortices, such as in a tip vortex, deviation from sphericity occurs even for the
smallest conceivable bubble sizes.

6. Once the bubble is on the axis, it tends to elongate significantly if the ratio between its
characteristic size and the viscous core radius is large. It then tends to subdivide into a
string of elongated bubbles along the axis.

7. The model was extended to the case of multiple bubbles in the vortex flow, and was able
to capture both inter-bubble and bubble-flow interactions.

Extension to a two-phase flow field

With a view towards large scale bubble flow simulations, the above approach was implemented
in an asymptotic approach which has the advantage of being much less constraining compu-
tationally both on time and memory, at the expense of restraining solutions to small bubble
deformations. The method of matched asymptotic ezpansions was used, the small parameter €
in these expansions being the ratio of the original bubble radius and the distance between the
bubble and the nearest line vortex. Analytical developments up to and including O(€?) were
made. The results were then expressed in terms of a series of ordinary differential equations
(in time) for the coefficients of the bubble shape function (in terms of spherical harmonics).

Experimental validation

A series of ezperiments on the interaction of spark generated bubbles and cavitating and non-
cavitating vortex rings was performed in order to confront the codes. A vortex ring was gen-
erated in a Plexiglas chamber maintained at pressures below the ambient. A spark generated
bubble was formed at various distances away from the ring, and high speed movies,video record-
ings and transient pressures in the liquid were recorded. A series of numerical simulations were

also performed with the BEM program in the same conditions and showed better than expected
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agreement with the experiment despite the modeling assumptions of inviscid liquid away from
a thin viscous core, and despite neglect of vortex ring behavior modification due to the presence
of the bubble.

c.1.2 Elongated bubble full interaction with a viscous line vortex flow

As a first step towards a full bubble / viscous flow interaction study, the following simplified
problem of cavitation inception in a line vortex was addressed. The dynamics of an infinitely
elongated (cylindrical) bubble was considered in a vortex line flow field. The Navier Stokes
equations were then solved in this axisymmetric two-dimensional case. The bubble dynamics
was obtained in terms of a second order differential equation, similar to the Rayleigh Plesset,
but which is restricted to a cylindrical geometry, and contains a term which is an integral of
the angular velocities in the flow. This term constitutes the coupling with the viscous flow.
The viscous flow is then obtained, using a finite difference scheme, by resolution of a diffusion
equation (reduced NS equations) whose coefficients depend on the bubble characteristics. The
results of this study are as follows:

1. Starting from an imposegl Rankine vortex flow field (sharp change in the slope of the
velocity profile, dug/8r, between the viscous and the inviscid parts), one observes that a
smoother profile is rapidly established.

2. The position, r., and the amplitude of maximum tangential velocity, ¥gmax, strongly
depend on the bubble dynamics:

- r. increases during the bubble growth and significantly decreases during collapse.

— Ugmax decreases during the bubble growth, and significantly increases during
collapse.

3. Vorticity concentrates near the axis, stretches during bubble collapse, and decays and
diffuses with time and during bubble growth due to viscous diffusion.

4. This results in a moderated bubble collapse and growth (compared to the idealized case
where the viscous basic flow is assumed independent of time) when viscous effects are
fully accounted for in the bubble/flow interactions.
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c.2 Bubble behavior in a shear layer near a flat plate
c.2.1 Asymptotic Analysis

During this contract we have studied bubbles in shear flows by means of the method of matched
asymptotic expansions, and by means of BEM simulations. A treatment of the behavior of a
bubble in a general potential flow was developed, under the assumption that the bubble size
was smaller than the characteristic length scale associated with the external flow. Equations
up to and including the O(e?) were developed.

The resulting equations were then specialized for the case of the flow past a semi-infinite
bluff body (the Schiebe half body). The equations obtained were then integrated, and showed
some interesting features. The formation of the reentrant jet was shown to be due to both a
combination of the presence of the wall and of the shear flow. In fact, the presence of the wall
(in terms of an image of the bubble) does not appear but at order €2, the main effect of the
wall at the leading order being its imposition of a shear velocity field.

c.2.2 Num:srical Simulation

A systematic numerical study of bubble behavior near a flat plate was conducted, using high
definition bubble discretization. This showed interesting results on bubble behavior during its
growth and collapse near a wall. For an increasing ratio, 7, between the shear flow velocity at
the bubble center level (shear flow is zero at wall and increases linearly away from it) and the
bubble characteristic Rayleigl velocity the following is observed:

1. For increased values of 7, the bubble deforms and elongates more and more during its
growth.

2. For small values of 7, the re-entering jet deviates from the perpendicular direction to the
plate with increasing values of 7.

3. For larger values of 7, the re-entering jet formation is totally modified and the bubble
tends to cut itself into two bubbles.

4. An interesting lifting effect is observed with increasing values of 7. The bubble centroid
is seen to move further and further away from the wall with increasing values of 7. This
is probably due to an interaction between the wall shear flow and the effective rotation
of the bubble with time.
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c.3 Multiple Bubble Dynamics

The focus of our study on multiple bubble dynamics has been both computational and analyt-
ical. The computational part of the study involved the simulation of various multiple bubble
dynamics problems. Full simulations of clouds subject to step changes in the pressure were per-
formed. The BEM simulations were compared with the predictions of an analytical treatment
based on the method of matched asymptotic expansions, with the small parameter chosen to
be the ratio of characteristic bubble size and characteristic inter-bubble distance. As would be
expected, the two methods predict similar solutions for small values of ¢, but diverge when the
value of ¢ is increased. These comparisons serve to provide a means of mutual validation of the
analytical technique and the numerical algorithm. A series of numerical experiments were then
performed to bring out various features of the dynamics of bubbles. The following conclusions
were brought out.

1. Multibubble effects result in a cumulative pressure build-up.

2. Pressure much higher than due to summation of the pressures due to the individual
bubbles are obtained. However, overestimates of these pressures are obtained with the

N

asymptotic approach. ~

3. While growth of a cloud of very close bubbles does not deviate much from the case of
weak interactions, collapse of a cloud proceeds in a very directive way. Bubbles on the
outer shell of a cloud collapse first, leading to a propagation of the collapse front towards
the inside of the cloud.

4. Most striking are screening influences of the bubbles - outer members of the cloud respond
in a manner markedly different from the ones on the inside of the cloud.

An asymptotic analysis was also performed to study the effect of compressibility on the
dynamics of a bubble cloud. This analysis, similar to that used by other workers to study
single spherical bubble dynamics, replaces the Rayleigh-Plesset equation by a Keller-Herring
(or other compressible equations). However, the analysis is complicated by the appearance of
two small parameters — the Mach number and the ratio ¢ of typical bubble size to inter bubble
distance. Corrections due to the compressibility were obtained. The analysis was performed
up to &3, and for the first order in Mach number.
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d A New BEM Technique for Study of Liquid-Liquid
Impact

While the BEM programs developed during the conduct of this study are much more effi-
cient than other methods used to simulate free surface problems, they suffered from a major
breakdown when the bubble surface became multi-connected (penetration and touchdown of
a re-entering jet). This affected for instance our simulations in the case of strong interac-
tions between multiple bubbles. In this case, the validity of the simulation is controlled by the
shortest period of the bubbles in the cloud. As soon as the shape of that bubble becomes multi-
connected the method fails and the computation stops. Thus a key extension of the simulations,
is determining the bubble dynamics beyond the point where bubble splitting, or reentrant jet
penetration and touch-down occurs. This is also interesting because the collapsing bubbles are
themselves capable of forming vortical structures following the non spherical collapse. This issue
is one of both practical and theoretical significance. Practically, these structures appear to be
associated with cavitation damage. Fundamentally, this highlights a mechanism by which a
flow that starts off being potential is later on able to develop vorticity by the collapse of various
pieces of the boundary onto each other.

Equations for the further flow were developed. The key feature of the methods is that
the surfaces formed by the touching parts of the bubble are treated as material vortex sheets.
This enables us to treat the problem with the boundary element method. A BEM program
capable of simulating bubble collapse past the touchdown point for axisymmetric geometries
was developed. This technique is presently being implemented in the 3-D code.

e BEM algorithm improvement for free-surface flow

Since the BEM programs developed deal essentially with the large deformation of free surfaces
(here mainly bubble interfaces), these same codes can be used after some adjustments to more
conventional free surface flows. During this contract, we applied these technique to study high
velocity jets that develop from the movement of a free surface suddenly generated when the
bottom of an empty cylinder open at both end is suddenly raised from the bottom of a container
full of water. The results correlated reasonably well with those observed experimentally using
high speed photography. Similarly, the flow due to a droplet impact on a free surface and to
bubble dynamics below a free surface were studied in small students projects.
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f Conclusions and Future Plans

The above described work forms the basis of our on-going develcpment of a powerful free surface
large nonlinear motion codes including vortical effects and two-phase flows. By combining all
the various tools described above, a large simulation code to run on supercomputers or parallel
machines is now conceivable. Most of the fundamental issues have been worked out under
this contract and other IR&D parallel efforts. Similarly, we are presently coupling a Vortex
Element Method with the BEM codes described above to study vortical flows / bubbly flows
interactions. We are alzo coupling our BEM code with a finite element (shell) method provided
by Laurence Livermore National Laboratories to study fluid structure interaction. We hope
to be able to achieve such a useful tool in the near future, in order to take advantage of the
ever-improving hardware computational capabilitics.

A List of Publications

1 Papers Published in Refereed Journals

1. G.L. CHAHINE AND R.-DURAISWAMI “Dynamical Interactions in a Bubble Cloud,”
ASME J. Fluids Engg., vol. 114, pp. 680-686, (1992).

2. G.L. CHAHINE, G.S. FREDERICK, AND R.D. BATEMAN, “Propeller Tip Vortex Cavi-
tation Suppression Using Selective Polymer Injections,” ASME J. Fluids Engg., vol. 115,
(1993).

3. S. ZHANG, J. DUNCAN AND G.L. CHAHINE, “Dynamics of a bubble past the point of
collapse,” J. Fluid Mech., vol. 257, pp. 147-181, (1993).

4. G.L. CHAHINE, “Cavitation Dynamics at Microscale Level,” Journal of Heart Valve
Disease, vol. 3, (1993).
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ical Approaches in Hydrodynamics,” (ed. T.MILOH), SIAM, Philadelphia, pp. 51-67,
(1991).




DYNAFLOW, Inc. - §8001-Final Report - 11

2. G.L. CHAHINE, “Bubble Interactions with Vortices,” in “Vortex Flows,” S. GREEN,
ed., to be published by Kluwer Academic, (1993).

3. G.L. CHAHINE, K.M. KALUMUCK, AND R. DURAISWAMI, “Coupling of a Fluids BEM
Code with a Structures FEM code for Fluid Structure Interaction,” in “Boundary Ele-
ments 15, Vol.2: Stress Analysis” C.A. BREBBIA AND J.J. RENCIS ED., Elsevier Applied
Science, (1993).

4. G.L. CHAHINE, “Dynamique des Bulles Non-Sphériques,” Chapter to appear in “ CAv-
ITATION”, EDITOR: J.P. FRANC, France (1994).

A.1 Technical Reports, Non Refereed Papers

1. G.L. CHAHINE, R. DURAISWAMI, AND A.N. LAKSHMINARASIMHA, “Dynamical Inter-
actions in a Bubble Cloud,” Proceedings ASME Cavitation and Multiphase Flow Forum,
Portland, pp.49-54. 1991

2. G.L. CRAHINE, K. WENK, S. GUPTA, AND P. ELMORE “Bubble Formation Following
Drop Impact at a Free Surface,” Proceedings ASME Cavitation and Multiphase Flow
Forum, Portland, pp. 63-69. 1991

3. G.L. CHAHINE, G.S. FREDERICK, AND R.D. BATEMAN, “Propeller Tip Vortex Cav-
itation Suppression Using Seiective Polymer Injections,” DYNAFLOW, INC. Technical
Report 91001_1.

4. M. REBUT AND G.L. CHAHINE “Asymptotic Study of Bubble Dynamics in a Nonuni-
form Potential Flow,” in Proceedings, ASME Cavitation and Multiphase Flow Forum, Los
Angeles 1992.

5. R.DURAISWAMI AND G.L. CHAHINE “Analytical study of the interaction a gas bubble
and a line vortex,” in Proceedings ASME Cavitation and Multiphase Flow Forum, Los
Angeles, 1992.

6. K. KALUMUCK AND G.L. CHAHINE “Large Reynolds Number Cavitating Vortex Ring
Propagation and Scaling,” in Proceedings ASME Cavitation and Multiphase Flow Forum,
Los Angeles, 1998.
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BUBBLE DYNAMICS AND CAVITATION INCEPTION IN NON-UNIFORM
FLOW FIELDS

Georges L. Chahine
DyNarLow, INC.
7210 Pindell School Road
Fulton, Maryland 20759

ABSTRACT

The study of cavitation inception in non-uniform
flow fields requires compler and sophisticated meth-
ods. These need to account for the interaction be-
tween the nuclei and the underlying flow, often in
the neighborhood of walls, in shear layers, in sepa-
rated regions, and in turbulent flow fields. This paper
describes onr contributions towards the development

*of techniques for the study of fully 3D bubdble/bubble

and bubble/flow interactions. With the advent of fast
and affordable computers suck techniques have be-
come more and more practical, and can be effectively
used as tools for the description of large scale bud-
ble/vortical flow field interaction simulations.

INTRODUCTION

In order to achieve a cavitation free design of a
submerged body such as a propeller, or to test a
scale model in a laboratory environment, it is nec-
essary to establish criteria for cavitation inception
and to define scaling parameters between models
and full scale. The traditional cavitation number
based on the engineering definition of cavitation in-
ception: a liguid flow esperiences caviistion if the
local pressure drops below the liguid vapor pressure
is obviously not always adequate. A large number of
studies over the years have aimed to replace this cri-
terion with a more adequate one based on spherical
bubble dynamics, following introduction of the con-
cept of critical pressure to replace vapor pressure. In
fact, cavitation very seldom occurs under the format
of spherical bubble growth and collapse. Cavitation
inception appears in several forms [1, 2], the most
recognised being :

(a) Explosive growth of individual bubbles,

(b) Sudden appearance of transient cavities or
“Bashes” on boundaries,

(c) Sudden appearance of attached partial cavities,
or sheet cavities,

(d) Explosive growth of bubble clouc: ;ind at-

tached cavities or a vibrating surface.

(e) Sudden appearance of rotating filaments, or vor-
tex cavitation.

Upon further scrutiny, all of these forms can be
related to the explosive growth of pre-ezisting nuci+i
in the liquid when subjected to pressure drops gener-
ated by various forms of local pressure disturbances.
These are either acoustically imposed pressure varia-
tions, uniform pressure drops due to local liquid ac-
celerations, or strongly non-uniform pressure fields
due to streamwise or transverse large vortical struc-
tures. The presence of nuclei or weak spots in the
liquid is therefore, essential for cavitation inception
to occur. Indeed, a pure liquid free of nuclei can
sustain very large tensions, in the hundreds of atmo-
spheres, before a cavity can be generated through
separation of the liquid molecules. Any fundamen-
tal analysis of cavitation inception has to start from
the observation that, any real liquid contains nuclei
which when subjected to variations in the local ambi-
ent pressure will respond dynamically by oscillating
and eventually growing ezplosively (i.e. cavitate).

In most real flow conditions which involve non-
uniform flow fields the conditions leading to cavi-
tation inception involve subjection of the cavitation
nuclei not only to significant pressure drops, but also
to equally significant pressure and/or velocity gradi-
ents. The spherical model, despite all the help it
has provided over the years, fails to address these
conditions because it assumes that the bubble fol-
lows the flow, and that its sise remains smaller than
the length scales of the pressure and velocity fluctua-
tions. However, detailed and precise observatioos of
flow fields in even the most simplified flow conditions
(hemispherical body, simple two-dimensional blades,
linear tip vortices, vortex rings, submerged jets, etc.)
show that the velocity and pressure fluctuations in
these flow fields are on the scale of strong eddies
of the same size as the microbubbles present in the
liquid. These observations gain further importance




when one notices that all laboratory scale model ex-
periments are inevitably done under conditions in
which the eddies and the bubbles are not scaled in
the same proportions (if bubbles are scaled at all).
The study of bubble dynamics in non-uniform flow
fields then stands out as being as fundamental and
important as spherical bubbles have been for the
past decades.

In this paper we describe our efforts towards the
understanding of this problem and complement our
contribution at the previous symposium (3]. Todoso
we consider three fundamental problems of relevance
to real flow field configurations: 1. bubble dynam-
ics in the boundary layer of a flat wall, 2. bubble
dynamics in the boundary layer of a head-form, and
3. Bubble dynamics in a vortical flow field. This
should enable one to deduce criteria for cavitation
inception accounting for large bubble deformation
and splitting. In addition, in the case of the bub-
ble dynamics in a vortex flow, we present schemes to
model flow modification by the bubble dynamics.

SOLUTION METHOD

One of the numerical methods that has proven to
be very efficient in solving the types of free bound-
ary problems associated with bubble dynamics is
the Boundary Element Method. Several investiga-
tors [4, 5, 6, 7] used this method in the solution of
axisymmetric problems of bubble growth and col-
lapse near boundaries. This method was extended
to three-dimensional bubble dynamics problems by
Chahine et al. {8, 9]. We describe here the model,
then apply it to various cases of bubbles in a vorti-
cal flow. More analytical methods such as those we
presented at the previous ONR Symposium [3], give
very good insight into the dynamics but are limited
to small bubble/flow field interactions.

Statement of the problem

Let us consider the dynamics of bubbles oscillating
in a non-uniform flow field (“basic flow”) of velocity
V, that is known (or determined by the problem so-
lution) and which satisfies the incompressible Navier
Stokes equations:

%ﬂ +V,- UV, = --:;VP, +UVIV, . (1)
Without any additional assumptions, in the
presence of oscillating bubbles the resulting velocity
field, given by V, also satisfies the incompressible
Navier Stokes equation:
ov

1
—_— V. = - 2y,
5tV TV =—SVP 4TV )]

Let us then define the bubble flow velocity and
pressure variables, V, and P,, as follows:

Vi=V-=1V,, Py=P-P,. (3)
We now consider the case where, because we are
interested in cavitation bubbles with high but sub-
sonic bubble wall velocities, the “bubble flow” field

is potential.
V= VQ., V2¢b = 0: (4)

We now subtract (1) from (2) accounting for (4)
to obtain

V¥ =V, x(VxV,), (5)
__“5 1 2 Pb
“"W*i'v'l +v.,-v.+7. (6)

This equation, once integrated, is to replace the
classical unsteady Bernoulli equation.

The assumption of potential “bubble flow” may
imply that no new vorticity can be generated by the
bubble behavior with the chosen model. However, if
we allow the basic flow to interact with the bubble
dynamics and be modified by it in a unrestricted
and rotational manner, as done later below, we can
recover generation and modification of vorticity by
the presence and dynamics of the bubble.

For the particular cases considered in this paper,
the following integrations can be made. In the case of
a flat wall boundary layer flow such that all velocity
vectors are parallel to the wall, and depend only on
the distance to the wall, V, = f(z).e;, where e,
is the umit vector in the flow direction, and e, is
the unit vector in the direction perpendicular to the
wall, Equation (6) becomes:

¥ = constant in the e, direction. (7

For the case where the basic flow field is composed of
linear vortices of axis direction, e,, V, = Vj.ey, with
Ve the tangential velocity, Equation (6) becomes:

¥ = constant in the e, direction . (8)

Bubble Flow Equations

As stated above, we consider the cases where the
presence of bubbles in the flow has significant effects,
that is cases where bubble volume variations are not
negligible. This implies large but subsonic bubble
wall velocities. Therefore, we consider a bubble flow
that is potential.




The solution must satisfy initial conditions and
boundary conditions at infinity, at the bubbles walls
and at the boundaries of any nearby bodies. At all
moving or fixed surfaces (such as a bubble surface or
a nearby boundary) an identity between fluid veloci-
ties normal to the boundary and the normal velocity
of the boundary itself is to be satisfied:

Ve  n=Vys:-n, 9

where n is the local unit vector normal to the bubble
surface and Vg is the local velocity vector of the
moving surface.

The bubble is assumed to contain noncondensi-
ble gas of partial pressure, P,, and vapor of the sur-
rounding liquid of partial pressure, P,. Vaporization
of the liquid occurs at a fast enough rate so that the
vapor pressure may be assumed to remain constant
throughout the simulation and equal to the equilib-
rium vapor pressure at the liquid ambient tempera-
ture. In contrast, since time scales associated with
gas diffusion are very large, the amount of noncon-
densible gas inside the bubbles remains constant and
the gas pressure is assumed to satisfy the polytropic
relation,

P,V* = constant, (10)

where V is the bubble volume and & the polytropic
constant, with £ = 1 for isothermal behavior and
k = ¢, /c, for adiabatic conditions.

The pressure in the liquid at the bubble sur-
face, Pp, is obtained at any time from the following
pressuce balance equation:

V. k
P =Py + P, (-vl) -Cy, (11)

where Py, and V, are the initial gas pressure and vol-
ume respectively, v is the surface tension, C is the
local curvature of the bubble, and V is the instanta-
neous value of the bubble volume. In the numerical
procedure P,, and V;, are given quantities at ¢ = 0.

3-D Boundary Integral Method

In order to render possible the simulation of sin-
gle or multiple bubble behavior in complex geometry
and flow configurations including the full non-linear
boundary conditions, a three-dimensional Boundary
Element Method was developed and implemented
{8, 9, 10, 11]. This method was chosen because of
its computational efficiency. By considering only the
boundaries of the fluid domain it reduces the dimen-
sion of the problem by one. This method provides
a solution of the Laplace equation (4) in terms of
Green'’s equation, which provides #f anywhere in

the domain of the fluid (field points P) if the ve-
locity potential, ®; , and its normal derivatives are
known on the fluid boundaries (points M),

/[—8’5 1

where Q is the solid angle under which P sees the
fluid. Q = 4x if P is a point in the fluid; Q = 2r if
P is a point on a smooth surface, and Q < 4x if P is
a point at a sharp corner of the surface.

If the field point is selected to be on the surface
of any of the bubblies or on the surface of the nearby
boundaries, then a closed set of equations can be ob-
tained and used at each time step to solve for values
of 3®,/dn (or ®;) assuming that all values of &, (or
O%;3/3n) are known at the preceding step.

] ds = Qef, (12

Discretization

To solve Equation (12) numerically, it is necessary
to discretize each bubble into panels, perform the
integration over each panel, and then sum up the
contributions to complete the integration over the
entire bubble surface. To do this, the initially spher-
ical bubbles are discretized into geodesic shapes us-
ing flat, triangular panels. To evaluate the integrals
over any particular panel, a linear variation of the
potential and its normal derivative over this panel
is assumed. In this manner, both ®; and 49;/dn
are continuous over the bubble surface, and are ex-
pressed as a function of the values at the three nodes
which delimit a particular panel.

Equation (12) then becomes a set of N equa-
tions (N is the number of discretization nodes) of
index 1 of the type:

N Y
Z A.','—a—ni = Z Bij®y,; —Q®s;, (13)

i=1 i=l

where the matrices A;; and B;; are the discrete
equivalent of the integrals in (12).

Curvature and tangential velocity computations

In order to proceed with the computation of the
bubble dynamics several quantities appearing in the
above boundary conditions need to be evaluated at
each time step. The bubble volume presents no par-
ticular difficulty, while the unit normal vector, the
local surface curvature, and the local tangential ve-
locity at the bubble interface need further develop-
ment. In order to compute the curvature of the bub-
ble surface, a three-dimensional local bubble surface




fit, f(z,y,2z) = 0, is first computed. The unit normal
at a node can then be expressed as:

=+ 2L
n-iwﬁ. (14)

with the appropriate sign chosen to insure that the
normals are always directed towards the fluid. The
local curvature is then computed using

C=V.n (15)

To obtain the total fluid velocity at any point
on the surface of the bubble, the tangential veloc-
ity, V, must be computed at each node in addition
to the normal velocity, V, = 8®;/3n n. This is
also done using a local surface fit to the velocity po-
tential, &; = h(z, y, =). Taking the gradient of this
function at the considered node, and eliminating any
normal component of velocity appearing in this gra-
dient gives a good approximation for V; :

Vi=nx (Ve xn). (16)

Time stepping

The basic procedure can then be summarized as
follows. With the problem initialized and the veloc-
ity potential known over the surface of the bubble,
an updated value of 3®;/Jn can be obtained by per-
forming the integrations in (12) and solving the cor-
responding matrix equation (13). D®;/Dt is then
computed using the “modified” Bernoulli equation
(7) or (8). Using an appropriate time step all val-
ues of ®, on the bubble surface can then be updated
using @, at the preceding time step and,

D®, _ o, (_9?_5 )
ﬁ——7+(a’ln+vt) V&,. (17)

In the results presented below the time step,
dt, is based on the ratio between the length of the
smallest panel side, Imin and the largest node ve-
locity, Vinaz. This choice linuits the motion of any
node to a fraction of the smallest panel side. It has
the great advantage of constantly adapting the time
step, by refining it at the end of the collapse - where
Imin becomes very small and V.5 very large ~ and
by increasing it during the slow bubble size varia-
tion period. New coordinate positions of the nodes
are then obtained using the displacement:

dM = (%!H Vies + v,) &, (18)

where n and e, are the unit normal and tangential
vectors. This tiie stepping procedure is repeated
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Figure 1: Influence of a linear shear velocity on the
collapse of a bubble near a solid wall. V,;qqr i8 nor-
malized with the Rayieigh velocity \/{AP/p).

throughout the bubble growth and collapse, resuit-
ing in a shape history of the bubble.

The developed code and method were validated
using comparisons with known results in the litera-
ture for spherical or axisymmetric bubble configura-
tions. Convergence of the 2-D and 3-D model were
then established for cases of interest using increased
numbers of grid points. Such detailed comparisons
can be found in {12}.

BUBBLE COLLAPSE NEAR A FLAT
WALL IN A SHEAR FLOW

In most previously published studies of bubble dy-
namics near solid walls, the wall was considered rigid
and infinite, and the liquid quiescent in the absence
of the bubble. The only asymmetry in the problem
is then due to the presence of the infinite wall, and
the bubble behaves axisymetrically. In this case, the
bubble forms a reentering jet perpendicular to the
plate during the collapse phase. Such a model has
been extensively used by many authors both for ex-
perimental and analytical/numerical studies mainly
aimed at studying erosion due to cavitation bubbles,
and was justified in the absence of more advanced
techniques. It is however, obvious that this config-
uration is rarely encountered in practical cavitating
flow fields.

Figure | shows the resuits obtained with a rela-
tively simple model for the wall flow using our BEM
code 3DynaFS. The velocity is assumed to vary lin-
early from a value, V,5.qr at a distance Rmes from
the wall to zero at the wall. The “basic” pressure,
Pims, is assumed constant across the shear layer
and is an input of the problem as is the initial gas




pressure inside the bubble, P,,. The bubble cen-
ter is located at a distance L from the wall. The
bubble behavior strongly depends on the parameter,
€ = Rpeg/L, characterizing wall proximity, and on
a shear parameter, X, ratic between the shear ve-
locity, Viaear , 30d a characteristic bubble dynamics
velocity: x = Viaear/ VAP/p.

Figure 1 shows selected bubble contours of the
bubble during its growth and collapse. These are
cross cuts of the 3-D bubble shapes obtained along
the plane of symmetry (perpendicular to the wall
and parallel to the flow direction). The presence of
shear is clearly apparent during the bubble growth:
downstream bubble points move away from the ini-
tial bubble center much faster than upstream points.
This follows the simple intuitive reasoning that each
point on the bubble surface moves with a velocity
composed of the velocity it would have in absence of
shear plus the local velocity of the “basic flow”. For
instance the farthest upstream bubble points sees
its undisturbed growth velocities increased by V,pear
while the farthest downstream point has its velocity
decreased by V,aeqr. The opposite is true during the
collapse phase. As can be seen by comparing the var-
ious cases of increasing x in Figure 1 “stretching” of
the bubble in the flow direction increases with the
shear intensity.

During the bubble collapse an even more signif-
icant effect of the presence of shear on the bubble
dynamics can be seen. The formation and develop-
ment of the reentering jet seems to be very dramati-
cally modified. Even when the shear velocity is very
small, the jet is very much delayed and weakened
in comparison with the case of the absence of shear.
Let us note that in the absence of a “basic flow”
the jet is directed towards the wall, and that in the
other extreme case, i.e. no wall and uniform flow,
the reentering jet is directed upstream. For a finite
value of x one would expect a jet angled towards the
wall and upstream.

For increased values of x, the bubble deforma-
tion and elongation is enhanced during the growth.
During collapse for small values of yx, the re-entering
jet is deviated for increasing values of x from the per-
pendicular to the plate. For larger values of x, the
re-entering jet formation is totally modified and the
bubble tends to cut itself into two bubbles. In ad-
dition, an interesting lifting effect is observed. The
bubble centroid is seen to move further and further
away from the wall with increasing values of x. This
is probably due to an interaction between the wall
shear flow and the bubble rotation.

body shap.
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Figure 2: The hemispherical Rankine body shape

used in the simulations and the corresponding pres-
sure coefficient, ¢,, distribution.
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BUBBLE DYNAMICS NEAR A HEMI-
SPHERICAL BODY

Cavitation on hemispherical bodies has been stud-
ied for a long time. The Schiebe body for instance
has been used in various laboratories for studying
cavitation scaling effects. More recently, an exten-
sive program for the study of cavitation inception for
various Schiebe body sizes was conducted at Caltech
and in the Large Cavitation Tunnel (LCC) in Mem-
phis [13, 14]. Very interesting observations of bubble
behavior on these headforms were made. These ob-
servations indicated strong interaction between the
bubbles and the boundary layer on the headform.
Large deviations from spherical bubble shapes were
observed, including bubble splitting and breakup,
formation of a weak reentering jet during bubble
growth, and formation of long ‘secondary cavitation’
or a trail behind the bubble. We present in this sec-
tion a numerical simulation of these effects using the
methods described above. The objective here is not
to reproduce all the characteristics of the experimen-
tal studies, but to observe which characteristics can
be captured by the present solution method.

To do so, the flow field around the Schiebe body
was simulated using a very elongated Rankine oval
closed body. Figure 2 shows the hemispherical body
shape and the corresponding pressure distribution
along the body. One can clearly observe the pres-
ence of a very sharp pressure drop at the upetream
body at location z/L = 0.05, followed by a pressure
rise which is maintained until the downstream loca-
tion, z/L = .95, where a second symmetric pressure
drop is present. The “basic flow” for the problem
here is defined as that due to the superposition of
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Figure 3: Simulation of the behavior of a bubble
near a hemispherical Rankine body shape showing
formation of indentation and trail.

a uniform flow, V,,, and two sources of intensity Q.
To maintain the body shape for various values of
the uniform flow velocity, the ratio Vi, /Q was main-
tained constant. In order to account for the presence
of a boundary layer on the body, this inviscid flow
field was modified arbitrarily in the neighborhood of
the hemispherical body shape, in such a way that the
velocity was decreased linearly to zero on the body.

In the following figures, the selected Rankine
body had a radius of 4 inches, and a length of 33
inches. In the simulations we have conducted the
bubble sizes were varied from 10 to 1000um, and the
flow velocities from 0 to 20 m/s. The cases presented
here are selected because they reproduce many of the
characteristics of the experimental observations in
(13, 14]. Figure 3 shows bubble contours at various
times, and illustrates clearly several key experimen-
tal observations: the formation of an indentation on
the bubble top while the bubble is being convected
downstream by the hemispherical body, the forma-
tion of a wedge shape on the downstream portion of
the bubble, the lifting of this portion of the bubble
from the wall, and the formation of a ‘trail’ behind
the bubble during its motion.

The indentation appears due to the opposing
effects on the upstream bubble portion of the basic
flow and the bubble growth velocity. This bubble
portion moves away the least from the initial bubble
center. With time due to the presence of the shear,
as in the flat wall case, this bubble region rolls away
from the body into the flow direction and, then, en-
counters a pressure rise which enhances the motion
of the indentation towards the body wall. On the
other hand, the bubble points that penetrate the

Figure 4: Bubble behavior in the boundary layer
of a cambered lifting surface showing the formation
of a long trail behind the bubble (from (15])

simulated ‘boundary layer’ of the body, find them-
selves quasi-trapped in that laver. As a result, these
points lag behind the rest of the bubble and a bub-
ble ‘trail’ appears. With the simple model used here,
this trail differs from that in the experiments by the
fact that it issues from the center part of the bubble
and not from its side. This could also be a scaling
effect, in the sense of differing ratios between the
bubble and the body sizes. Figure 4 taken from ob-
servations on a lifting surface [15] shows a trail which
resembles very much those obtained by the present
numerical simulations.

Figure 5 shows the case of a bubble where the
rolling motion of the bubble points is not strong
enough for the reentering point to relocate itself
above the wall. Instead, the indentation occurs early
on in the downstream portion of the bubble leading
to a fission of the bubble and the formation of a long
trail.

Figure 6 shows the case where fission of the
front of the bubble is very obvious. This case re-
sembles very much to the experimental observations,
and precedes bubble collapse and rebound.

BUBBLE /VORTEX INTERACTIONS

A fundamental aspect of cavitation in turbulent
flows, and in boundary and shear layer flows con-
cerns the interaction between bubbles and vortices.
A simple example is that of a ‘tip vortex’ cavitation
on propellers and three-dimensional airfoils. The in-
teraction between bubbles and vortex flows is in fact
of relevance to several fluid engineering problems in-
volving submerged jets. flows behind constrictions
and orifices, in wakes and in separated flow areas.
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Figure 5: 3-D view of the bubble shape near a
hemispherical Rankine body shape after formation
of a trail.

Figure 6: Bubble end splitting near a hemispherical
Rankine body shape.

Mechanistic Description

When a bubble approaches a region of high vortic-
ity in a liquid, it is accelerated towards the center
of rotation due to the highly asymmetric pressure
fietd. On its path the bubble experiences a decreas-
ing ambient pressure which leads to an increase in
its volume. Simultaneously, since the non uniformity
of the pressure field increases with proximity to the
vortex axis, bubble shape deformation increases.

Over the last decade several investigators have
addressed the phenomenon of bubble capture by a
vortex (16, 18, 19]. These studies made the simplify-
ing assumption that the bubble, even though able to
undergo volume changes. remains spherical. In ad-
dition, the type of interactions they considered was
one-sided, since they did not consider vortex flow
modification by the presence and behavior of the
bubble. More recently we considered a broader ap-
proach where bubble deformation and motion were
coupled while neglecting flow field modification by
the bubble presence [10. 20i. This study showed
that the pressure gradient across the bubble can lead
to significant departure from bubble sphericity, and
led to the suggestion that the deformation and later
splitting of the bubble during its motion towards the
vortex center is, in addition to its volume change, a
main source of noise in tip vortex cavitation. This
appears to explain the reason for the location of tip
vartex noise at cavitation inception very close to the
blade [22], and is in agreement with recent obser-
vations by [23] about bubble capture in tip vortex
cavitation.

One can distinguish three phases in the inter-
active dynamics of bubbles and vortices: a) bubble
capture by the vortex, b) interaction between the
vortex and the bubble, c¢) dynamics of bubbles elon-
gated only on the vortex axis. We consider these
aspects below.

Order of magnitude considerations

In order to discuss the probiem of bubble capture
and behavior in a line vortex let us consider a Rank-
ine vortex flow field. We define T as the vortex line
circulation, and ue the only non-zero velocity com-
ponent. For distances r smaller than R., the radius
of the viscous core, the flow has a solid body rota-
tion behavior while for distances r larger than R, the
flow behaves as an ideal inviscid irrotional vortex:

r r
w=; = rSRi w=g— r2R. (19

2.2

For such a flow the pressure field. p(r), is known. Its
value and the correspounding pressure gradient are




given by the following normalized expressions.
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F=r/Re; B(F) = p(r)/Poo- (21)
The parameter , (Q, defined as

with

1 T
Q= Edm)’h’w ' (22)

characterizes the intensity of the pressure drop due
to the rotation relative to the ambient pressure, peo.

The pressure gradient steepens in the inviscid
region when the viscous core is approached, achieves
its maximum at 7 = 1, and levels off in the viscous
core close to the vortex axis. In this pressure field,
the bubble experiences a higher pressure on its right
side than on its left side, the difference being greater
the larger the bubble is. Similarly, the bubble is
‘sheared’, since fluid particles on the bubble/liquid
interface experience different velocities. The type of
shearing action depends on the position of the bub-
ble relative to the viscous core/inviscid fluid bound-
ary, R.. If the bubble is fully immersed in the invis-
cid region of the flow, fluid particles on its left side
will experience larger velocities, while if it is fully im-
mersed in the solid body rotation region of the flow,
fluid particles on its right side will experience larger
velocities. The most complex situation is when the
bubble is partly in the viscous core and partly in the
inviscid region.

The degree of bubble shape deviation from
sphericity is a function of the relative orders of mag-
nitude of the pressure gradient, the bubble wall ac-
celeration due to volume change, and surface tension
forces. An evaluation of the bubble wall acceleration
can be obtained from a characteristic bubble radius,
R,, and from the Rayleigh time, rr, time needed
for an empty bubble to collapse from its radius Ry
to 0, under the influence of the pressure outside the
bubble. If we take for characteristic outside local
pressure the pressure at r = R,, the characteristic
bubble wall acceleration, Yrowen, i8 :

Ygrowth l,gﬂ. 2 Poo(l = Q)/PRb (23)

This value is to be compared with the acceler-
ation force 7grqdienc due to the pressure gradients
expressed in (20):

Ygradientl,—p, = 2QPco/pRe, (24)

The ratio between these two accelerations is:

72.“”" - ?_R_‘ . Q (25)
Tyrowth | zn, R. 1-Q

This expression underlines the importance be-
tween the ratio of characteristic bubble size Ry, to
viscous core size R, . Keeping the surface tension
parameter the same, the larger the ratio (25) is, the
more important bubble deformation will be. This
remark Ras important implications concerning scale
effects where R, and R, do not increase in the same
proportion between model and full scale, since in most
practical cases bubble distributions and sizes are
uncontrolled and typically cannot be scaled much,
while sizes of the vortical regions depend on the se-
lected geometry and velocity scales.

The ratio (25) is only an indication of the rel-
ative importance of bubble growth and slip forces
at a given position. In fact the relative importance
of these competing forces changes during the bub-
ble capture process. For instance, the acceleration
of the bubble toward the vortex axis increases with
its proximity to the viscous core while the growth
rate tends toward a constant value (decreasing pres-
sure gradient). This indicates that strong deforma-
tion becomes predominant relative to volume change
when either the bubble is very close to the axis or
when Q becomes large.

Another important physical factor which affects
bubble shape is the surface tension. A normalized
value of this pressure can be obtained as a ratio of
the surface tension pressure and either the pressure
difference between the inside and the outside of the
bubble, or the amplitude of the variations of the lo-
cal pressures (pressure gradients) around the bubble.
The first number, W, , is given by:

W, =Ry [Pi - Peo(l — Q)] /7 (26)

where p; is the pressure inside the bubble. The sec-
ond number, W,,, is given by:

W., = Ry (dp/0r)/ (1/Rs) (27)
which can be written for r = R.:

2Q Ry
Pi/Po - (1= Q) R’ (28)

For small values of either of these two numbers,
surface tension forces are predominant and prevent
bubble distortion and deviation from sphericity. Ex-
pressions (28) shows that this is possible only if Q is
small and if R; is much smaller than R,. Therefore,
as for the discussion on the acceleration forces, one
should expect larger bubble deformations for strong
vortex circulations and large bubbles.

wW., = W,,




Bubble capture by a vortex

Despite several significant contributions to the
study of bubble capture by a vortex, to our knowl-
edge no complete approach has yet been undertaken.
The complexity of the full problem due to bubble de-
formation during its capture has led the various con-
tributors to neglect one or several of the factors in
play, and therefore to only investigate the influence
of a limited set of parameters.

The order of magnitude of the bubble capture
time by the vortex can be easily obtained {16, 17] if
one considers, the case where the rate of change of
the bubble volume is negligible relative to the other
terms. In this case, the distance between the sphere
center and the vortex center, {(¢), is given by:

Zm:\/l-o—(v?;’-s)?s \/1-323, (29)

where ¢ is normalized with the initial bubble posi-
tion, ¢,, time is normalized with (27¢2/T), and v,
is the initial bubble tangential velocity normalized
by (['/27().

The capture time, T, for a bubble initially ac
rest in the fluid (v5; = 0) is therefore of the order:

- 1 2x(3
te 2/ =; T ~ —=. 30
¢ 3 or r\/,; (30)

In fact, for a sphere, only viscous friction forces
are responsible for bubble entrainment with the flow.
The characteristic time of viscous effects, or the time
needed by the bubble to be entrained by the flow is

T, =a/v. (31)

The qualitative nature of the capture depends on the
relative size between T, and 7.

If T, 3» T, the capture time is too long, viscous
effects are predominant, and the bubble is entrained
by the liquid and it swirls around the vortex while
approaching the center very slowly.

If T. € T, the opposite situation occurs. Vis-
cous effects are very slow to take effect and the bub-
ble is practically sucked into the vortex and moves
towards its center almost in a purely radial fashion.

Finally, for T, ~ T, entrainment by the liquid
and attraction towards the center of the vortex oc-
cur on the same time scale. Therefore, the bubble
approaches the axis in a spiral fashion.

The above reasoning allows one to define a “vio-
lent capture radius” around the vortex which is bub-
ble radius dependent. A bubble of radius a, will
be sucked in by the vortex if it is within the radial
distance Reapeyrs :

2y

3
Recplurc=ao (r—ﬁ) . (32)

This implies for a tip vortex flow fieid, for in-
stance, that only nuclei preseat in a small ‘window’
are rapidly attracted by the vortex and strongly in-
teract with it, which explains difficulty in observing
with some precision tip vortex cavitation inception
events.

Numerical Results: Large bubble growth
rate, low surface tension

As expected from the discussion presented above nu-
merical simulations using the fully three-dimensional
numerical code 3DynaF'S reveal potential for strong
bubble deformation during capture by a vortex. The
numerical results indicate that this is the case for a
very wide range of bubble sizes and initial values of
the pressure difference between the inside and the
outside of the bubble.

Figure 7 shows bubble behavior in the case
where the ratio between the pressure inside the bub-
ble and the ambient pressure is significantly large.
Pi/Px = 384. This would be the case where the
bubble in equilibrium in a high ambient pressure en-
vironment is suddenly subjected to the flow field of
a vortex, as for instance when a propeller tip vor-
tex suddenly captures a cavitation bubble {23, 24|.
In a Cartesian system of coordinates, the bubble is
initially centered at (0,0,0), and the line vortex is
parallel to the Z axis, at X = X/Rmaz = 2Rmes
is the maximum size the bubble would have if al-
lowed to grow under the same pressure difference in
an infinite medium). The core size is 4Rmqee. With
this geometry the bubble center remains in the plage
2 =0.

Figure Ta gives a projected view of the bubble in
the XOY plane at different instants. The observer
is looking down on the XOY plane from very far
on the Z axis. The bubble is seen spiraling around
the vortex axis while approaching it. At the same
time, due to the presence of the pressure gradient,
the bubble strongly deforms and a reentering jet is
formed directed towards the vortex axis, indicating
the presence of a much larger dynamic pressure on
the bubble side opposite to the vortex axis.

Figure 7b shows a projected view of the same
bubble in the YOZ plane seen from the OX axis.
Here some moderate elongation of the bubble is ob-
served along the axis of the vortex as well as a very
distinct side view of the re-entrant jet. This resull is
tolally contrary to the usually held belief that bubbles
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Figure 7: 3D bubble shapes at various times. Bub-
ble initially at the origin of coordinate and vor-
tex at X = 2Rmaz- Q@ = 0474, v%/po = 584.3,
R./Rmae: = 4. Projected view a) in the .XOY plane;
b) in the XOZ plane.

constantly grow during their capture until they reach
the aris and elongate along it.

Figure 8 shows in the .XOY plane perpendicu-
lar to the voriex axis the motion of two particular
points on the bubble, A and B, initially along OY.
Also shown is the motion of the midpoint, C. While
C seems to follows a path similar to the classical
logarithmic spiral, A and B can follow more compli-
cated paths, even moving away from the vortex axis
at some point in cime for case (b) where the vortex
axis was initially at X = 1.

Small growth rate and surface tension

Figure 9 considers the influence of bubble size
on bubble behavior during the capture process. In
all three cases shown in the figure a ratio between
the pressures inside and outside the bubble equal
to one is considered, p;/px = 1. In all cases, the
viscous core radius is chosen to be R, = 2.2 mm,
while the initial distance between the vortex cen-
ter and the center of each bubble is chosen to be
Co =~ 1.5R; = 3.2 mm. The dimensions showa are
normalized with the initial bubble radius for each
case. The circulation in the vortex is chosen to cor-
respond to a practical value for the case of a tip
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Figure 8: Motion of points A and B initially on
axis OX, and mid point C, versus times. Q = 0.474,
Pi/Po = 584.3, a./Rmar = 4. Vortex at a)
X= 2R.m“ N b) X = Rmat-

vortex behind a foil, such as in the experiments de-
scribed in [23, 24], T = 0.152 m®/s. Three bubble
sizes are considered: 10 um, 100 um and 1000 um.
As expected, bubble deformation increases with the
bubble size. The deformation is small for a,=10 um,
becomes very significant for a,=100 um, and is ex-
tremely important for a,=1000 um. In all cases, the
bubbles, while remaining in the inviscid region, are
seen to be sheared very strongly by the flow. The
smaller bubbles appear to deform in the expected
way in a shear flow. The larger bubble case (a,=1000
um) shows extreme bubble elongation and wrapping
around the viscous core region.
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Figure 9: Bubble contours at various times.
[ = 0.152Tm?/s, p; = Poo. 8c = 2.2mm, vortex
at X = 3.2mm, with a, = a) 10um. b) 100um. c)
1000um.
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Figure 10: Behavior of 5 bubbles in a vortex line
flow - Contour shapes at various times. The vor-
tex line is perpendicular to the page and centered
on Y = 1.5mm. R, = 22mm, T = 0.1573m?/s.
Q = 0.872. All bubbles have ag = 100um.

Multiple Bubbles

One of the key question that one needs to address in
the practical studies of bubble/vortical field interac-
tion is how does a distribution of bubbles modify the
flow field. In order to address such a problem the
program 3DynaFS is being modified for effective
implementation on a supercomputer. Indeed one of
the difficulties of such a study is the required large
number of discretization points which prevents sig-
nificant runs on typical memory and speed limited
computers. Some preliminary multibubble interac-
tions were considered in (27, 26]

Figure 10 shows the case of a 5-bubble configu-
ration. This run has the advantage of including both
vortex/bubble and bubble/bubble interactions. All
five bubbles are chosen such that in absence of the
vortex flow field, the pressures inside and outside
each of them is the same and equal to 0.74 atm,
Pi/P = 1. The viscous core radius and the cir-
culation are again chosen to be in the same ranges
as those in the experiments described in [23, 24].
The viscous core is chosen to be R, = 2.2mm, while
[ =0.1573 m?/s, Q = 0.872. The initial bubble cen-
ters are selected to beon OY axis at Y = 0,2,3,4
and 5 mm. The vortex line is parallel to OX axis
and is centered on Y = 1.5 mm. As a result, bub-
bles No. 1, 2 and 3 are initially located in the vis-
cous core, while bubbles No. 4 and 5 are located
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Figure 11: 3D bubble shapes in the vortex line flow
field of Figure 8 before collapse of buble No. 1. View
from a) OZ axis, b) OX axis.

in the inviscid flew region. All five bubbles consid-
ered have an initial radius of 100 um. Figure 10
shows contours of the bubbles as they rotate around
the vortex axis at various times. This figure clearly
shows the presence of a non-uniform flow field. In-
dee?. Bubble No. 3 which is the closer to the region
of highest angular velocity of the “basic flow” is seen
to swirl around tue vortex center at the fastest rate,
while Bubble No. 2, which is the closest to the vor-
tex center is seen to practically rotate around itself.
Similarly, the highest shear is seen to occur close to
the viscous core edge where the pressure gradients
and their variations are steeper.

Since all bubbles were chosen to have the same
initial radius and internal pressure, the natural pe-
riod of oscillation of each of the selected bubbles in-
creases with the proximity to the vortex axis. Asa
result, the farthest bubble from the axis, Bubble No.
3, collapses first while stretching and deforming.

Figure 11 shows two thee-dimensional views of
the bubbles before the collapse of bubble No. 1.
These views enable one to have a better idea of the
bubblie shape deformation and elongation during the
capture phenomenon. Similar experimented obser-
vations were seen in (24].

Bubble on vortex axis

Let us consider now the case where the bubble is
captured by the vortex and placed at its axis. Such
a problem was considered earlier in {21] for an elon-
gated bubble. Unfortunately. that study neglected
an essential element of vortex dynamics: i.e. the




Figure 12: Comparison between the contours of an
elongated bubble during its collapse in the absence
and in the presence of swirl. Initial elongation ratio
of 3. Peo/pi = 3.27. a) No swirl. b) Q = 0.36.

Rc/Rmu =3.

presence of an azimuthal velocity, and a strong jet
which initiated at both extreme points of the bub-
ble along the axis of symmetry was obtained. As
shown in Figure 12a such a behavior is reproduced
using the program 2DynaFS when the vortex flow
field is neglected. However, the opposite effect is
in general obtained when the rotation in the vortex
flow is included. Figure 125 illustrates this for par-
ticular values of 2 and the normalized core radius,

In both cases shown in Figures 12a and 12b the
initial length to radius bubble elongation ratio was
three. It is clear from the comparison that the swirl
flow has a conclusive effect on the bubble dynam-
ics. Bubble surface portions away from the vortex
axis experience much higher pressures than bubble
surface portions on and close to the vortex axis, and
therefore move much faster during the collapse phase
generating, instead of the sharp jets on the axis as in
Figure 12a, a constriction in the mid-section of the
bubble. This generates an hourglass shaped bubble
which then separates into two tear-shaped bubbles.

In the following figure 13a—~c, various configura-
tions of initially spherical bubble dynamics are stud-
ied. The initial internal pressures inside the bubbles
are taken to be larger than the pressure on the vor-
tex axis, and the bubbles are left free to adapt to this
pressure difference. The figures show that the bub-
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'Figure 13: Bubble dynamics on the axis of a vor-

Left side shows 3D shapes at selected
times. Right side sho“s bubble contours at in-
creasing times. [ = 0.003m?*/s. R, = 100um.
3)pi/Poo =2, Re/Ro = 1.b) pi/psc =2. Re/Ro = L.
¢) Pi/pe = 1, Re/ Ro = 0.57.

tex line.

ble behavior depends significantly for a given value
of the swirl parameter, Q. on the normalized core ra-
dius R, ratio of R, to Rmgaz. In all cases where Rpas
is larger than R, it appears that the bubble lends to
adapt to the vortez tube of radius R.. This could lead
to various bubble shapes as shown in the following
figures ending up with a very elongated bubble with
a wavy surface for large values of Rmqr/R..
Figures 13a@ — ¢ show bubble contours at vari-
ous times during growth and collapse for increasing
values of the core radius. R, and decreasing values
of p:/pec- Also shown are selected 3D shapes of the
bubbles at various times. It is apparent from these
figures, that during the initial phase of the bubble
growth, radial velocities are large enough to over-
come centrifugal forces and the bubble first grows
almost spherically. Later on. the bubble shape starts
to depart from spherical and to adapt to the pressure
field. The bubble then elongates along the axis of
rotation. Once the bubble has exceeded its equilib-
rium volume, bubble surface portions away from the
axis — high pressure areas - start to collapse, or to
return rapidly towards the vortex axis. To the con-
trary, points near the vortex axis do not experience
risiug pressures during their motion, are not forced
back towards their initial position, and continue to
elongate along the axis. As a result, a constriction
appears in the mid-section of the bubble. The bub-




ble can then separate into two or more tear-shaped
bubbles. [t is conjectured that this splitting of the
bubbles is a main contributor to cavitation inception
noise. This behavior is very similar to that observed
for bubble growth and collapse between two plates
(15], which results in the formation of a vortex line!

Keeping Q constant while reducing the core size
R, has the effect of steepening the radial pressure
gradient along the bubble surface and increasing the
rotation speed inside the viscous core. This enhances
the deviation of the bubble shape from a sphere, and
increases the centrifugal force on the fluid particles
closer to the vortex axis. This has the consequence
of increasing the elongation rate of the bubble and
results in more and more complex dynamic shapes of
the elongated bubbles. The bubble can then become
subdivided into three, four or more satellite bubbles
during the collapse. The elongated and wavy shapes
obtained have been observed on cavitation on the
axis of the vortex form=d in a vortex tube [26].

Observation of the elongated bubble dimension
variations with time are very revealing {10, 26]. Nor-
malizing lengths by Rm,. and time by the Rayleigh
time based on Ry, and the pressure difference be-
tween Py, and the pressure on the vortex axis, one
finds that the bubble length along the rotation axis
strongly depends on Q. However, the bubble cross-
section radius closely follows the classical Rayleigh
model and is very little dependent on 2. Variations
of Q between 0.1 and 0.94 modify the normalized
bubble period by less than 10 percent. One should
notice, however, that bubble period is here defined
as the time needed for the bubble to subdivide into
two secondary bubbles.

More realistic vortex line model

While the Rankine model is very helpful to study
the fundamentals of bubble/vortex interactions, it
does not allow one to capture other features such as
flow and bubble motion along the axis of rotation.
In (28] we conducted a study where a Burgers vortex
line flow field was considered.

= =Cr, u;=0Cz

u —-_r.[l_e (:Lz.)
= 2 P\

where C is a constant, and § is the viscous core ra-
dius. The pressure distribution can then be obtained
by solving the momentum equation:

p(r, 2,t) = peo = 2pC%22 - 20C?52X? - B/2X2+
B [exp(-X?) - exp(-2X’)/2]]/X’+
B [Ei(-X?) - Ei(-2X?)],

(33)

(34)
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Figure 14: Bubble dynamics on the axis of a vis-
cous line vortex. Contour shapes versus time. Basic
field obtained using a viscous flow solver with vis-
cous diffusion along z and r. Viscous core size 1mm,
initial bubble size 100um.

with B = p['/2xé and X = r/26. This flow and
pressure field were used to study bubble dynamics
on the vortex axis. When the bubble in initially
centered at the origin of coordinates it has again a
symmetric behavior. However, a much faster bubble
elongation with time is then seen, but here again the
bubble cross section does not exceed the core size.

Figure 14 show an example of bubble behavior
in an even more realistic vortex line flow field. In
this case the flow field of the vortex line is obtained
by solving the viscous flow field due to an imposed
Rankine vortex flow plus a uniform axial velocity at
z = 0. This is to simulate the diffusion of a vortex
line generated at the tip of a three-dimensional foil.
The commercial Navier Stokes solver Fidap was then
used at the Ecole Navale at Brest to obtain the dif-
fusion of such a flow along the z axis, and included
an axial flow at z = 0. The resulting flow field was
then used as a basic flow to study 3-D bubble behav-
ior using 3DynaF'S. In this case pressure gradients
along the vortex axis arve important enough to pro-
duce a reentering jet along the vortex axis while the
bubble is entrained along the vortex line by the =
component of the flow.

Experimental validation study

In order to validate the numerical studies on bub-
ble vortex interactions, a fundamental experiment
was conducted. This consisted of the controlled ob-
servation of the interaction between a vortex ring
and a bubble. The results of the experiment were




then compared with those obtained with 3DynaF$
described above [25, 26]. The vortex ring was gen-
erated in a Plexiglas tank using a cylinder equipped
with a 2.5 cm radius piston. The cylinder had a
sharp lip exit to enhance the roll up of the fluid vor-
tex generated at the lip. This results in a vortex
ring with a diameter slightly larger than that of the
cylinder. A spark generated bubble was produced
where desired in the vortex ring flow field. The in-
teraction between the generated ring and bubble was
then observed using high speed photography. A trig-
gering line allowed one to synchronize the departure
of the piston and the triggering of the spark gener-
ator using pressure transducers to precisely detect
the vortex ring motion.

Both the experimental observations and the nu-
merical computations showed very similar behaviors.
The results of these comparisons can be found in
(25, 26]. Bubble shearing and splitting along the
flow direction appears common. This can be quali-
tatively understood by considering the velocity and
pressure fields around the bubble. The motion of
each point on the surface of the bubble is the re-
sult of the combination of the underlying fluid ve-
locity and of the velocity due to the bubble growth
or collapse. The effect of the underlying fluid flow is
usually small during initial bubble growth and later
bubble collapse phases due to the large bubble wall
velocity during these phases, but becomes most im-
portant at the end of the growth where bubble wail
velocities reach a minimum. For a bubble in a uni-
form flow, the presence of the underlying flow re-
flects on the bubble shape during the growth by a
larger extension of the bubble in the downstream di-
rection and by a flattening of the bubble shape in
the upstream direction. Later on due to inertia, the
downstream bubble part that has extended further
collapses faster forming a reentering jet directed up-
stream.

When the flow is not uniform, a similar phe-
nomenon occurs but is stronger on one side of the
bubble than on the other due to the typical asymme-
try of a shear flow. In addition, the fact that the un-
derlying shear flow becomes at some point during the
bubble history stronger than the local bubble wall
velocity creates the opportunity of a jet generated
by the underlying flow, which can be opposite to the
one described above and directed downstream. This
leads to the formation of a constriction all around
the bubble with a tendency for bubble splitting.
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Figure 15: Dynamics of the interaction between a

cylindrical bubble and a line vortex. I = 0.5 m?/s.
Pyo =3x10%Pa, Pyy=1.3x10%Pa. a) Bubble radius.
value of maximum azimuthal velocity us max, and po-
sition of Remax. b) Bubble radius versus time with
and without viscous interaction.

FULL VISCOUS INTERACTION BE-
TWEEN A CYLINDRICAL BUBBLE AND
A LINE VORTEX

One weakness of the numerical approach presented
above is the fact that, while the influence of the flow
on the bubble was fully accounted for, the modifica-
tion of the flow by the bubble presence and dynamics
was restricted to the case where the “bubble flow”
was potential. In the present section, we will remove
this restriction in the simple case of the interaction
between a cylindrical bubble and a line vortex. This
corresponds to cases where the line vortex has the
central part of its viscous core gaseous or vaporous.
Such an analysis is important to determine criteria
for unstable bubble growth (cavitation inception),
and to describe how bubble dynamics affects the vis-
cous flow itself. To do so. we consider the case where
an axisymmetric elongated bubble of initial radius a,
is located on the axis of a fully viscous line vortex.
For illustration, we consider the case where, at ¢t = 0,
the vortex line is a Rankine vortex. From there on,
the vortex diffuses with time and interacts fully with
the bubble. The generated flow satisfies the axisym- -
metric incompressible Navier-Stokes equations.

Denoting the radius of the bubble as a(t), and
its time derivative, a (t), the continuity equation
leads to:




ur = a(t)a(t)/r (35)

Replacing u, by its expression in the momentum
equations one obtains:

Leasa®—uj) - L5 = -2

Ouy aa (Ous ug _0/18 )
ey 2 (T; +2) 2vg (25(run), (D
This set of coupled equations allows one to describe
both the bubble dynramics and the flow field modifi-
cation accounting for two-way interaction.

Method of Solution

In order to obtain a differential Equation for the bub-
ble radius variations, similar to the Rayleigh Ples-
set Equation, Equation (36) is integrated between
r = a(t) and a very large radial distance, r = Riny,
beyond which the vortex flow is assumed to be in-
viscid (vortex line of circulation I'). This leads to an
integral term containing u. In order to obtain this
term, a space and time integration of Equation (37)
is needed. This is obtained using a Crank-Nicholson
finite difference integration scheme. To do so, the
domain of integration is made time independent us-
ing the variable change,

s =r/a(t). (38)
The integration region becomes for all times [1; sine],
with Rin/(t) = a(t)siny. Equation 37 becomes:
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Similarly, Equation (36) becomes:
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Initial and Boundary Conditions

The initial conditions considered are as follows. For
the bubble,

a(0) = a,, a(0)=0. (43)

For the line vortex, the equation at ¢ = 0, is that of a
Rankine vortex. In addition, the following boundary
condition is imposed at the bubble interface:

P(a) = p.+p..(°)u +2ua"'(“). (44)

where 4 is the dynamic viscosity, and the gas com-
pression law is given by:

Py = Py, (a,)“ .

To close the problem, the following condition is
imposed on the pressure at the distance, Rin; :

r )2. (46)

2xsinra(t)

(45)

PURut) = P =20

Some Preliminary Results

Figures 15a¢ and 15b illustrate both the bub-
ble/vortex flow field interaction and a case where
there is a need to include this full interaction in the
dynamics. In these two figures, the bubble has an
initial radius of I1mm, while the viscous core of the
vortex has an initial radius of lem. The initial cir-
culation in the vortex is 0.5 m3/s, and the initial
pressure in the bubble is 5x103Pa, while the am-
bient pressure is 1.3x10%Pa. Therefore, the bubbie
starts its dynamics by collapsing. Figure 15a shows
simultaneously three characteristic quantities of the
problem versus time. The first quantity is the bub-
ble radius versus time, while the other two quantities
are the radial position, Ry maz, of the maximum as-
imuthal velocity, ue max, and the value of this veloc-
ity. In the previous sections, these two last quantities
remained constant with time. A very important first
result very clearly shown in Figure 15a is that both
the position of Ry max, and the value of tg mar, both
directly depend on the variation of a(t). The vis-
cous core (of radius Ry mey) is seen to decrease with




the bubble radius during bubble collapse, and to in-
crease with the bubble radius during bubble growth.
This tendency of the viscous core to get displaced
with the bubble wall, corresponds to intuition, but
is proven numerically to our knowledge for the first
time here and in [28].

Viscous effects appear more prominently when
following the bubble dynamics over more than a sin-
gle period of oscillation. Both maximum values of
Romax 3nd Upmax are seen to decrease with time.
Through conservation of momentum, the azimuthal
velocity follows an tendency opposite to the core
size. As the bubble wall moves inward the viscous
core shrinks, simultaneously increasing the tangen-
tial velocity to a maximum when the bubble reaches
maximum size. As the bubble grows again, the core
expands and the tangential velocity decelerates to a
minimum at the maximum bubble radius. When the
flutd particles are pulled in towards the vortex axis
they accelerate tangentially. This is similar to the
phenomenon of vortex stretching .

Figure 156 shows the importance of the inclu-
ston of full viscous flow / bubble interaction in the
dynamics. The figure shows also the case where the
underlying flow field is forced to remain that of a
Rankine vortex. In that case, the bubble oscilla-
tions are repeatable with time, and no viscous decay
of the amplitude of the oscillations-are visible. To
the contrary when the underlying flow is modified
through viscous diffusion and interaction with the
bubble, the bubble radius oscillations decays very
much after the first collapse, and the flow field char-
acteristics are modified as described in Figure 15a.

Figures 16a and 16b show, respectively, the in-
fluence on the problem dynamics of the initial gas
pressure inside the bubble, P,,, and the ratio of ini-
tial core radius to initial bubble radius, R./a,. For
an initial pressure on the vortex axis of 7x10%Pa,
Figure 16a shows the dynamics of the bubble and
the viscous core size when the initial pressure in the
bubble decreases from 5x10%Pa to 1.5%10%Pa. For
Py, = 5x10%Pa the bubble collapse is very weak,
and the core radius is seen to follow the bubble wall
oscillations. For all three other smaller values of P,,
starting from Py, =4x10°Pa the bubble collapse is
strong enough to result in a full collapse of the vis-
cous core which practically disappears (maximum
azimuthal velocity at the bubble wall) during the
later phases of the bubble collapse. This is followed
by a much stronger rebound of the viscous core than
the bubble rebound.

Figure 165 shows a behavior similar to the pre-
vious figure when the ratio, R./a,, increases. Here
again a strong core collapse and rebound is observed
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Figure 16: Dynamics of the interaction be-
tween a cylindrical bubble and a line vortex.
Pizis, =7x10%Pa. a) Influence of the initial bub-
ble pressure, P,,, on bubble radius and position of
Romax. Re/ae = 2. b)Influence of R./a, on the bub-
ble radius and position of Rymax. Pge =1.5x10%Pa.

when the initial distance between the bubble wall
and the core radius is decreased.

The case of initial bubble growth instead of col-
lapse is not shown here because it presents the same
character as observed in the rebound cases in the

above figures.

INTERACTION BETWEEN
AND A VORTICAL FLOW

In order to extend the methods presented above
to the more general case of the interaction between
a bubble and a general rotational field, the BEM
method was coupled to a vortex element method.
With this approach the basic vortical flow is repre-
sented by a distribution of three-dimensional vortex
elements, and if need be, by the addition of a po-
tential component. The procedure then is to track
in time both the bubble free surface motion and the
vortex elements motion. By doing so, one is able
to obtain not only the bubble motion and defor-
mation, but also the vorticity distribution variation
with time. Modification of the vortical field by the
presence of the bubbles is thus an outcome of the
interaction method.

The above is based on the basic principle that
any arbitrary basic flow field may be decomposed

A BUBBLE




into a potential part, ¢,, and a rotational part, A :
u=us+u, =V, +VxA. (47)

The rotational part of the velocity u, derives
from the vector potential A which satisfies

VA = -, (48)

where w is the vorticity. The velocity is obtained by
the Biot-Savart law:

ww =3 [ ‘i‘-‘T:l—;‘f;’"—’ dy.  (49)

For numerical simulation, the vorticity field is
discretized using a desingularized representation of
vorticity 29, 30, 31].

N
w(x0) =Y wfi(x—x)dV; (50
=0
where x; are the centers of the vortex elements,and
fs is a spherical rapidly decaying core function or
mollifier [29], which is chosen to be

3 _2

fi(r)= oy B (51)
following [31). With the discretized vorticity dis-
tributed over vortex elements, we may also write
dV; = dA; x dx;,and hence

U.'dV.' = I‘.-dx,- (52)

where [;is the elementary circulation associated
with the i-th line element. By virtue of Kelvin and
Helmholtz theorems [; remains invariant in time,
and the elements follow the local velocity field en-
abling stretching and tilting of the elements. The
change in the vorticity is represented by a change in
the line element dy;. The discretized velocity expres-
sion is:

N

- 1 ,(x-x.-)xdx,- (*—Xi)

‘h(x)-§4tr‘ lX-x,-P 5 6 ’

K=l-e". (53)

The element positions are updated by the velocities
at their end points

xi(t + dt) = x:(t) + u(x;, t)dt. (54)

The convergence of this vortex method was
proven in [32]. The procedure is as follows. For
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Figure 17: Interaction between a bubble and a fi-
nite thickness line vortex represented by 3D vortex
elements. Crosscut in the plane of symmetry 1=0.
Note motion of the vortex line points close to the
bubble deviate significantly from a pure circular mo-
tion as away from the bubble.

a given vorticity distribution in the flow field of in-
terest, a geometric distribution of three-dimensional
vortex elements is selected. In the examples below a
Gaussian distribution is selected. The inverse prob-
lem of (50) is then solved to obtain the values of the
elementary circulations, [;, associated with each fi-
nite line element. With the knowledge of this initial
vortex element distribution, and the initial bubble
discretization, one can proceed with the time step-
ping to solve the problem. The influence of all bub-
ble panels and all vortex elements on the bubble and
vortex nodes are computed. This allows determi-
nation of the new values of the velocity on all the
bubble nodes. Knowing all values of ¢, and 34, /dn
on the boundaries one can deduce the velocity any-
where, and in particular at all nodes of the vortex
elements whose position can then be updated using
(54).

The case of a finite thickness line vortex was
considered and represented with 18 vortex lines dis-
cretized into 3D elements. One can then obtain as
shown in Figure 17 both the bubble and the vortex
line deformations. Figure 17 shows the intersection
at various times during bubble growth and collapee
between the plane z = 0 and the bubble and the
vortex elements. This shows both bubble and vortex
elements motion with time. Note that the motion of
the vortex line point close to the bubble deviate sig-
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Figure 18: Interaction between a bubble and a fi-
nite thickness line vortex represented by 3D vortex
elements. 3D view at maximum bubble size of the
bubble and vortex line shapes
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Figure 19: Vorticity distribution modification
along the OY axis during bubble oscillation in a fi-
nite thickness line vortex represented by 3D vortex
elements.
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nificantly from a pure circular motion. Thoss away
from it just rotate around the central paint due their
mutual interaction and to the symmetry of the distri-
bution. Figure 18 shows a 3D saapshot of the bubble
and vortex line shapes for the example of a bubble
immersed in the vortical field. Figure 19 shows how
the vorticity distribution along the OY axis has been
modified by the dynamics and presence of the bub-
ble. It is apparent in this case that very significant
redistribution of the vortex field is possible during
the bubble motion.

The above example is shown as an illustration of
the method being developed. More detailed descrip-
tions and a more extensive analysis are in prepara-
tion {33}.

CONCLUSIONS

The study of bubble dynamics in non-uniform flow
fields is complex but essential to any real attempt to
study bubble dynamics in realistic flow conditions.
Due to the difficulties involved in both experimental
and analytical approaches, the trend is to address
the problems by a two-pronged effort involving nu-
merical and experimental simulations. This is made
possible by the development of advanced high speed
computers which render direct numerical simulations
possible in reasonable amounts of time. The stud-
ies presented above addressed various aspects of the
problem, namely bubble behavior in the vicinity of
boundaries, bubble capture by a vortex and bubble
dynamics in a vortical flow field. The most interest-
ing development is the capability to study the influ-
ence of the bubble’s presence on the vortical field it-
self. Our attempts in this direction were briefly pre-
sented and are presently very actively being pursued.
It is hoped that a matching between a flow solver, at
least in the vortical region, and a bubble dynamics
solver such as 2DynaFS or 3DynaFS will enable
one to describe with some acceptable accuracy the
full interaction between the bubbles and the vortical
flow field. This is of great importance since it would
allow the user to understand the mechanics involved
thus enabling one to manipulate the phenomena for
technological advantage in applications such as, in
ship wakes, bubble drag reduction, or cavitation in-
ception delay.
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Chapter 19
BUBBLE INTERACTIONS WITH VORTICES

Georges L. Chahine!
DYNAFLOW, Inc.

7210, Pindell School Road
Fulton Maryland 20759

Abstract
The understanding of the fundamental mechanisms involved in the interaction between bubbles
and vortices is of relevance to many important engineering applications. Classical assumptions
of bubble sphericity and decoupling between bubble and flow behavior prevent one from
capturing essential elements of the interaction. Bubble motion and deformation are seen to be
of great importance for most bubbles in the size spectrum. In this chapter studies on bubble
capture by a vortez, bubble motion and deformation during that capture, and bubble behavior
. once the bubble is on the vortez azis are described. Flow field modifications once the bubble is
on the vortez azis are also briefly considered. The most promising approach appears to consist
of a coupling between a boundary element method to describe the bubble behavior and a viscous

flow solver to describe the basic flow.

19.1. INTRODUCTION

The simultaneous presence of bubbles and vortices is typical of many high velocity turbulent
flows. Spectacular examples can be observed with propellers, where at high rotational speeds
the helicoidal tip vortices formed at the tip of each blade ‘cavitate’ and become sites of
bubble concentration and fluid vaporization into what is termed ‘tip vortex cavities’ (see
photograph in Figure 19.1a). This phenomenon is addressed in more detail in Chapter 17.
While for practical reasons engineers tend to superficially address the fundamental problem -
by stating, for example, that cavity formation in the vortex will occur if the pressure on the
center line drops in the monophase model below the liquid vapor pressure-, a closer look at
the fundamental processes at work reveals that the actual phenomenon is rather very complex
and very poorly understood. Questions such as how does a microscopic bubble behave in
the presence of the vortex ..., or how and to what extent the presence of bubbles modifies
the flow field of the vortex ... have, at this point, only preliminary answers or no answers
- at all. The interaction between bubbles and vortex flows is in fact of relevance to several
fluid engineering problems. Important examples include cavitation in shear layers, boundary

‘ " Talso Research Professor, The Johns Hopkins University, Baltimore, MD
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Fig. 19.1. Practical ezamples of bubbles and vortices. a) Tip vortez cavitation on a propeller (Chahine
et al., 1993b), b) Vortez cavitation in the separated region behind a cylinder (courtesy cc. J.Y Billard,
Ecole Navale, Brest, France).

layers, tip vortex cavitation, bubbles in the shear layer of submerged jets, cavitation behind
orifices, bubbles in separated flow areas (see Figure 19.15), microbubbles in boundary layers,
...etc. In the above mentioned flows, bubbles are held responsible for dramatic effects such as
noise generation, materials erosion, and bubble drag reduction. These effects, experimentally
observed and widely accepted, are not yet completely understood. Therefore, a satisfactory
control of the deleterious effects is not presently possible.

This chapter will try to highlight the problems, present some proposed explanations and
methods for solution, and provide some preliminarily confirmed results. However, it does
not claim to answer all the complex and presently unanswered questions, and likely fails to
address some of the problems that will appear to be important in some configurations in future
research.

19.1.1. Mechanistic Description When a bubble approaches a region of high vorticity
in a liquid, it is accelerated towards the center of the vortex. The asymmetric pressure
field pushes the bubble towards the vortex axis while it is swirling. On its path the bubble
experiences a decreasing ambient pressure which can lead to an increase in the bubble size.
Simultaneously, since the non uniformity of the pressure field around the bubble increases with
proximity to the vortex axis, bubble shape deformation increases. An explosive bubble growth
is provoked if the pressure in the vortex field drops below the bubble ‘critical pressure’, p..
For a bubble of radius r, in static equilibrium when the ambient pressure is P,, this pressure is
defined as the pressure below which an equilibrium bubble radius does not exist. In cavitation
studies within the assumption of an isothermal law of behavior of the gas included in the bubble
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(see Section 19.4.1, Equation (19.37)) this pressure is defined by?

40
(191) P = P., - 5;:,
where o is the surface tension parameter, and r. is the ‘critical radius’ given by
33 20\1'?
] = |2 - —_—
(19-) Te %9 (Po P, + ~ )] ’

where P, is the liquid vapor pressure (see for example Hammitt 1980).

Over the last decade several investigators have addressed the phenomenon of bubble
capture by a vortex (Bovis, 1980a,b; Latorre, 1982; Ligneul, 1989; Ligneul and Latorre, 1989).
However, these studies made the strong simplifying assumption that the bubble, even though
able to undergo volume changes, remains spherical. In addition, the type of interactions they
considered was one-sided, since they did not consider vortex flow modification by the presence
and behavior of the bubble. More recently, Chahine (1990) considered a broader approach
where bubble deformation and motion were coupled while neglecting flow field modification
by the bubble presence. This study showed that the pressure gradient across the bubble
can lead to significant departure from bubble sphericity, and led to the suggestion that the
deformation and later splitting of the bubble during its motion towards the vortex center is,
in addition to its volume change, the main source of noise in vortex cavitation. This appears
to explain the reason for the location of tip vortex noise at cavitation inception very close to
the blade (Higuchi et al, 1989), and is in agreement with recent observations by Arndt and
Maines (1993) about bubble capture in tip vortex cavitation. We will consider the details of
such approaches in the following sections.

One can distinguish three phases in the interactive dynamics of bubbles and vortices:
a) bubble capture by the vortex, b) interaction between the vortex and an initially quasi-
spherical bubble on its axis, ¢) dynamics of elongated bubbles on the vortex axis. After some
phenomenological and order of magnitude considerations of the phenomena at hand, we will
consider each of the three phases and the method of solution proposed for their study.

19.2. ORDER OF MAGNITUDE CONSIDERATIONS

In order to analyze the problem of bubble capture and behavior in a line vortex let us
consider as an example the Rankine vortex flow field described in Section 1.1. We adopt a
notation consistent with that section, denoting I' the vortex circuiation, and g the only non-
zero velocity component. However, in order to avoid potential confusion with the bubble radius
definitions later, we will use R, for the radius of the viscous core (R is used in section 1.1).
For distances r smaller than R. the flow has a solid body rotation behavior (velocities vary
as r), while for distances r larger than R, the flow behaves as in an ideal inviscid irrotational
vortex (velocities vary as 1/r). The expression of the velocity is given in Equation (1.1.14).
For such a flow the pressure field is known and its value p(r) is given by Equation (1.1.16). A
key parameter which appears in the pressure expression is the “swirl parameter”, (2, defined
as

TThis is obtained by considering Equation (19.38), writing V =4$#r] and Vo=§#r] , and solving for the minimum of the
function Py (r).
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r
(19.3) Q= zg) .

Poo
which characterizes the intensity of the pressure drop due to the rotation relative to the
ambient pressure, p,. To illustrate the importance of this parameter, we normalize the
pressure with p,,, to obtain the following normalized expressions for the pre.sure and the

pressure gradient:

Q 20
pE)=1-; g=;3-; F21,
(e . 9P _ o
(19.4) BF)=1-02(2-7); 3 =27 F<U
with o)
19.5 =L, =27
(19.5) =g B(r) = -

Note that the pressure on the vortex axis is (1 — 202) and goes to zero when 2 approaches 1/2.

As seen in Figure 1.1.5 the pressure gradient steepens in the inviscid region when the
viscous core is approached, achieves its maximum at ¥ = 1, and levels off in the viscous core
close to the vortex axis. If a bubble is subjected to the pressure field shown in the figure, it will
experience a higher liquid pressure on its right side than on its left side, the difference being
greater the larger the bubble is. Similarly, the bubble is ‘sheared’, since fluid particles on the
bubble / liquid interface experience different velocities. The type of shearing action depends
on the position of the bubble relative to the viscous core / inviscid fluid boundary, R.. If the
bubble is fully immersed in the inviscid region of the flow, fluid particles on its left side will
experience larger velocities, while if it is fully immersed in the solid body rotation region of
the flow fluid particles on its right side will experience larger velocities. The most complex
situation is when the bubble is partly in the viscous core and partly in the inviscid region. In
that case, it is expected that the bubble behavior will be vortex flow model dependent, since
in fact the sharp separation between the two regions is purely mathematical, and is a very
schematic representation of the physical reality.

Due to the pressure and velocity gradients the bubble is accelerated toward the axis while
somewhat growing and deformung. Therefore, depending on its size and position, the bubble
experiences a pressure variation zlong its surface and a slip velocity relative to the surrounding
fluid. This results in some degree of bubble shape deviation from sphericity. The importance
of this deviation is a function of the relative orders of magnitude of the pressure gradient, the
bubble wall acceleration due to volume change, and surface tension forces.

An evaluation of the bubble wall acceleration can be obtained from a characteristic bubble
radius, Ry, and from the Rayleigh time, rg, time needed for a empty bubble to collapse from
its radius Ry to 0, under the influence of the pressure outside the bubble (Rayleigh, 1917). For
the present problem let’s take for characteristic outside local pressure the pressure at r = R,,
that is (p = 1 — Q) as the typical local ambient pressure, the Rayleigh time is then:

— , P
(196) TR = Rb m

The characteristic bubble wall acceleration, Y4rowtr, at r = R, is then:
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~ Ry ~ Pao(1l =)
(19.7) 7"“"""-& =7 - oRs
This value is to be compared with the acceleration force Ysregient due to the pressure

gradients expressed in (19.4):
1P

Yoradient = ;79-;,

2P
(198) "brudimt'mgc = "p—R:’

The ratio between these two accelerations can be evaluated, for instance at r = R, , to
yield the simple expression:

(19.9) Yorodient | _ 25
Yorowth r=Re Rc

This expression underlines the relative importance between the characteristic bubble size
Ry, and the viscous core size R. . Keeping the surface tension parameter the same (see
discussion on the Weber number below), the larger the ratio (19.9) is, the more important
bubble deformation will be. This remark has important implications concerning scale effects
where R, and R, do not increase in the same proportion between scale and model, since in most
practical cases bubble distributions and sizes are uncontrolled and typically cannot be scaled
much, while the size of the vortical regions depend on the selected geometry and velocity
scales.

The ratio (19.9) is only an indication of the relative importance of bubble growth and slip
forces at a given position. In fact the relative importance of these competing forces changes
during the bubble capture process. For instance, the acceleration of the bubble toward the
vortex axis increases with its proximity to the viscous core while the growth rate tends toward a
constant value (decreasing pressure gradient). This indicates that strong deformation becomes
predominant relative to volume change when either the bubble is very close to the axis or the
vortex circulation (the “swirl parameter”, ) becomes large.

Another important physical factor which affects bubble shape is the surface tension. A
normalized value of the corresponding pressure, a Weber number, can be constructed by
combining the surface tension pressure (coefficient, o) with either the pressure difference
between the inside and the outside of the bubble, or the amplitude of the variations of the
local pressures (pressure gradients) around the bubble. The first number. W,,, is given by:

L
-0

_bi- Pxo(l — )
(19-10) m; - 6/R¢, ’
where p; is the pressure inside the bubble. The second number, W,,, is given by:
dp/or
(19.11) W, = Rb-;/——é;-,

which can be written for r = R.:

o P N (BY_w 2 AR
(19.12) W,,.-2Q(;/—E) (E)"W"ﬁ—(l—ﬂ) =

Y
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For small values of either of these two numbers tension forces are predominant and prevent
bubble distortion and deviation from sphericity. Expressions (19.12) shows that this is possible
only if Q is small and if R, is much smaller than R.. Therefore, as for the discussion on
the acceleration forces, one should expect larger bubble deformations for stronger vortex
circulations and larger bubbles.

19.3. BUBBLE CAPTURE BY A VORTEX

Despite several significant contributions to the study of bubble capture in a vortex, to our
knowledge, no complete approach has yet been undertaken. While the overall approach, in
terms of the investigation of the bubble motion has several similarities to the problem of the
interaction between vortices and solid particles (see Chapter 20), the bubbles, unlike solid
particles, will deform and change volume while interacting with the vortex flow field. The
complexity of the problem has led the various contributors to neglect one or several of the
factors in play, and therefore to only investigate the influence of a limited set of parameters.
The first approaches to the problem were attempted independently at about the same time by
Bovis (1980a), and Latorre (1980). While both studies accounted for volume change during
bubble motion, the basic assumptions and effects taken into account were quite different. Bovis
(1980a,b) considered the case where the flow velocities in the vortex flow are large enough to
justify the assumptions of inviscid potential flow. This simplification, valid for instance in tip
vortex cavitation where very large tangential velocities come into play, and when the bubble is
not too close to the vortex axis, allows one to consider other important effects. For instance,
one can then consider in a consistent fashion important phenomena such as the modification
of the vortex flow by the presence of the bubble and the volume change and shape deformation
of the bubble (Duraiswami and Chahine, 1991). On the other hand, Latorre (1980) and in
following studies (Ligneul and Latorre, 1989), in a more pragmatic approach, considered real
fluid effects to determine the bubble motion equation, neglecting bubble shape deformation
and modification of the flow by the bubble behavior. They coupled these equations with a
spherical bubble dynamics model to deduce noise emission in tip vortex cavitation.

In the potential flow approach, the expression of the modified flow field due to the presence
of a spherical bubble is based on Weiss’ theorem (see Milne-Thomson, 1968). In a spherical
system of coordinates centered at the sphere center, if the undisturbed potential flow in absence
of the sphere of radius a, is ®o(r, 8, ¢),the velocity potential of the modified flow due to the
presence of the fixed sphere is ®(r, 8, ¢) given by the equation:

a?/r3
(19.13) &(r,0, ) = Bo(r, 0, 6) + % o/ 3300(;;9, %) iz,

Using the notations in Figure 19.2, the expression of the velocity potential of the vortex
flow is: '

(19.14) Bo(r,0,8) = 52-' tan~1 rsinfsin ¢

¢(t) +rsinfcos @’

where T is the vortex circulation and ((t) is the instantaneous distance between the vortex

and the bubble center.
Similarly, the expression of the velocity potential of the flow due to the bubble radius time
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Fig. 19.2. Sketch of the geometric quantities involved in the analytical description of bubble capture
in a vortez line.

variations, a (t), is

(19.15) 05(1',9, ¢) = -

where o indicates time differentiation. If we account for a relative velocity (V — Vp) between
the spherical bubble and the fluid the modified bubble velocity potential becomes:

a*(t) & (t)

a’(t) a (t) a’(t)

(19.16) ®y(r, 0, 9) = r(V —-Vs),

where V(t) and Vg(t) are the instantaneous fluid and bubble center velocities. The absolute
velocity potential in the fixed coordinate system attached to the vortex, #,, which accounts
for bubble motion and radius variations is then:

/’ aoo(z 6,9),.

(19.17) &, = & - @l _ “—3(-Qr-(v Vi) +

r

The equation of motion of the sphere can now be obtained by using Bernoulli’s equation
and integrating the pressure over the surface of the sphere. The resulting force leads to the

following dynamic equation:
2

where p and p, are the liquid and bubble content density, a the bubble radius, n the normal
vector to the bubble surface, and dVp/dt the bubble acceleration. The evaluation of the
expression (19.18) in the general case is rather complex. A simplified asymptotic expression
can however be obtained when the radius of the bubble is small relative to the distance from
the vortex axis,

(19.19) e=22 < 1.
)

(19.18) —wa p.
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The expression of the two nondimensional components of the acceleration are then:

o NV 3  (an.1\Vd Vea

(19.20) (7+§)T-‘11+(7+-2')T-—z )
Vo VoV .3(3 Va
(19.21) T_-_z_.}.a((__a_)'

where the velocities are normalized by the tangential velocity at the location (, of the center
of the bubble at ¢ = 0, and time by the ratio between the distance (,, and that characteristic

velocity,

r
W=W / m’
(19.22) i=t / 2’;53.

Similarly, ¢ is normalized with the initial position, { = (/ {,. Note that V;, = d(/dt, and
that for a bubble py/p is negligible. The third component along ¢ is obviously zero due to
the symmetry of the problem (see Darrozes and Chahine, 1983, for further discussions and
derivations of the above equations).

In the studies of Ligneul and Latorre (1989) the bubble equation (19.18) is replaced by an
empirical force balance equation first given by Johnson and Hsieh (1966):

(19.23) % =3(V - Vp)- - 3”% + %w -Val,

where Cj is a viscous drag coefficient. The first two terms on the right hand side come from
inviscid flow considerations and are therefore included more formally and more accurately
in Equation (19.18). The first term which results directly from the integration in (19.18)
of the third term in Equation (19.17). It reflects the fact that any slip velocity between
the bubble center and the surrounding fluid increases with an increase of the bubble wall
velocity and a decrease of the bubble radius. Therefore, the bubble center decelerates during
bubble growth and accelerates very much during the bubble collapse where both a and a™!
are very large. The second term is in fact an acceleration term of the relative or slip velocity,
(V — VB), whose expression has been often debated in the multiphase flow community (Van
Wijngaarden, 1980). The third term is a viscous drag term where the drag coefficient Cy
depends on the Reynolds number of the relative flow, R,,. Ligneul and Latorre (1989) used

the expression:
2|V - Vg|
v

(19.24) C¢=-;-% [14+0.197R +26 x 0*RLY];  with Ry =

Other authors add a memory term (Basset term) which accounts for the full history of the
slip velocity through an integration between 0 and ¢. Based on equation (19.23) the equations
of motion of the bubble become for a Rankine vortex of viscous core radius, R.:

WVie a  Cql6V|| 3 i)-
T_CV“-:*V'" [;+ 4a 4:3R§f1 R.)’
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Wi, _ 2 i Cilsv]
(19.25) (= -—2CVu+3€[a+—“—- ;
dVis a Cqlév]
Tdt =3 [a + 4a |’

=5 =T _ W
(19'26) fl—zi 6-21& dt ? CSRQ‘)
¢ r dVi, .

ft=ﬁ, €=§;C-— = (2R

Both approaches (Bovis, 1980a, Latorre, 1980) used the spherical bubble dynamics
equation - known as Rayleigh Plesset Equation (Plesset, 1948) - to determine the bubble
radius vaciation with time:

(19.27) » (a e +g a’) - 4,‘-2 = —Pu(t)+ P+ P, (%—)” -2],

where 4 is the dynamic viscosity, P,, the initial gas pressure with k the polytropic gas constant,
P, the vapor pressure, and 7 the surface tension coefficient. Assumptions leading to this
equation are described further in Section 19.4.1.

19.3.1. Capture Time In order to get an idea about the characteristic time for bubble
capture by the vortex let us consider equations (19.20) and (19.21). If one considers - for
an order of magnitude evaluation- the case where the rate of change of the bubble volume is
negligible relative to the other terms, then the two equations of motion degenerate to:

Vi 3 Vi

M— = —— + M=,
d 2 C
Ve Va¥
(19.28) T
where ]
P 1
(19.29) =8+3

Equations (19.28) can be integrated to give the position of the non deforming bubble
relative to the vortex axis versus time. Using d{/d¢ as an intermediary variable to express
d/dt as d/d(-d(/dt, and assuming that the bubble center has no initial radial velocity (v, = 0),
while the initial tangential velocity is vg,, Equation (19.28) leads to:

(19.30) Via(t) = % and T = [1 + (v.:’ - 5%4-) I’] "

Equation 19.30 is very instructive in terms of the motion of a particle of density py in
a vortex flow field. Depending on the sign of (53’ - ﬁ)the particle will be attracted or
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repelled by the vortex. This term in fact expresses a balance between inertial (centrifugal)
and pressure forces. For bubbles entrained in the flow field of the vortex, vy, is between 0 and
1, and M is very close to $, since py/p € 1. As a result

(19.31) IO~ V1+@s-3)P <V1-32
The capture time, T, for a bubble initially at rest in the fluid (75;(0) = 0) is therefore .
1 2x(3
19.32 e =t/=; e = —=.
(19.32) 1 \/; or T T3

In fact, for a sphere, only viscous effects can be responsible for bubble entrainment with the
flow, since with the inviscid model Equations (19.18) clearly indicate that only radial forces
on the sphere are non-zero. In the presence of viscosity friction forces enable entrainment of
the bubble with the fluid. The characteristic time of viscous effects, or the order of magnitude
of the time needed for the bubble to be entrained in the flow being

(19.33) T, =22,

v
the qualitative nature of the capture depends on the relative size between T, and T,.

If T. > T, the capture time is too long, viscous effects are strong enough for the bubble
to be entrained relatively rapidly by the liquid and it starts swirling around the
vortex. It approaches the vortex axis little by little but very slowly.

If T. < T, the opposite situation occurs: viscous effects are very slow to take effect and
the bubble is practically sucked into the vortex moving towards its center almost
in a purely radial fashion.

Finally, for T, & T, entrainment by the liquid and attraction towards the center of the
vortex occur on the same time scale. Therefore, the bubble approaches the axis
in a spiral fashion. The above reasoning allows one to define a “violent capture
radius” around the vortex which is bubble radius dependent. A bubble of radius
a, will be sucked in by the vortex if it is within the radial distance Reapture :

(19.34) Reapture = a5 v %-;/75

19.4. NUMERICAL STUDY

Due to the difficulty of the problem at hand and to the improved performance of high speed
computers, numerical methods offer presently the best hope for solutions. Coupled with
guidance from analytical, experimental and order of magnitude or phenomenological studies,
a numerical approach can enable minimization of the number of physical phenomena to take
into account. One of the numerical methods that has proven to be very efficient in solving
the type of free boundary problem associated with bubble dynamics is the Boundary Element
Method. Among others, Guerri et al. (1981), Blake et al. (1986, 1987), and Wilkerson (1989)
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used this method in the solution of axisymmetric problems of bubble growth and collapse near
boundaries. This method was extended to three-dimensional bubble dynamics problems by
Chahine et al. (1988, 1989). We describe here the model, then apply it to the case of bubbles
in a vortex flow.

19.4.1. Bubble Flow Equations Let us consider the cases where the presence of a
bubble in the flow has significant effects, that is cases where bubble volume time variations
are not negligible. This implies large but subsonic bubble wall velocities. Therefore, one
can neglect viscosity and compressibility effects on the bubble dynamics. These assumptions,
classical in cavitation bubble dynamics studies, result in a flow that is potential, (velocity
potential, ®), and which satisfies the Laplace equation,

(19.35) V2® = 0.

The solution must in addition satisfy initial conditions and boundary conditions at infinity,
at the bubble walls and at the boundaries of any nearby bodies.

At all moving or fixed surfaces (such as a bubble surface or a nearby boundary) an identity
between fluid velocities normal to the boundary and the normal velocity of the boundary itself
is to be satisfied:

(19.36) Vé®.n=V,-n,
where n is the local unit vector normal to the bubble surface and Vj is the local velocity
vector of the moving surface.

The bubble is assumed to contain noncondensible gas as well as vapor of the surrounding
liquid. The pressure within the bubble is considered to be the sum of the partial pressures of
the noncondensible gases, P, , and that of the liquid vapor, P,. Vaporization of the liquid is
assumed to occur at a fast enough rate so that the vapor pressure may be assumed to remain
constant throughout the simulation and equal to the equilibrium vapor pressure at the liquid
ambient temperature. In contrast, since time scales associated with gas diffusion are much
larger, the amount of noncondensible gas inside the bubbles is assumed to remain constant

and the gas is assumed to satisfy the polytropic relation,
(19.37) P,V* = constant,

where V is the bubble volume and & the polytropic constant, with ¥ = 1 for isothermal
behavior and k = ¢,/¢, for adiabatic conditions.

The pressure in the liquid at the bubble surface, Py , is obtained at any time from the
following pressure balance equation:

Vo*
(19.38) PL=P,+P V) - Co,
where P,, and V, are the initial gas pressure and volume respectively, o is the surface teasion,
C is the local curvature of the bubble, and V is the instantaneous value of the bubble volume.
In the numerical procedure P,, and V, are known quantities at ¢ = 0.

19.4.2. Boundary Integral Method for Three-Dimensional Bubble Dynamics
In order to render possible the simulation of single or multiple bubble behavior in complex
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geometry and flow configurations including the full non-linear boundary conditions, a three-
dimensional Boundary Element Method was developed and implemented by Chahine et al.
(1988-1991). The Boundary Element Method was chosen here because of its computational
efficiency. By considering only the boundaries of the fluid domain it reduces the dimension of
the problem by one. This method is based on Green's equation which provides & anywhere in
the domain of the fluid (field points P) if the velocity potential, ® , and its normal derivatives
are known on the fluid boundaries (points M), and if @ satisfies the Laplace equation:

a, 1
(19.39) //[ an1Mp|+°an(|Mpl) ds = ax®(P),

where ar = (0 is the solid angle under which P sees the fluid.
a = 4, if P is a point in the fluid,
a =2, if P is a point on a smooth surface, and
a < 4, if P is a point at a sharp corner of the surface.

If the field point is selected to be on the surface of any of the bubbles or on the surface of
the nearby boundaries, then a closed set of equations can be obtained and used at each time
step to solve for values of 3®/3n (or @) assuming that all values of ¢ (or 3®/dn) are known
at the preceding step.

To solve Equation (19.39) numerically, it is necessary to discretize each bubble into panels,
perform the integration over each panel, and then sum up the contributions to complete the
integration over the entire bubble surface. To do this, the initially spherical bubbles are
discretized into a geodesic shape using flat, triangular panels. This discretization of a bubble
shape is described in Chahine et al. (1988 and 1993¢c). Equation (19.39) then becomes a set
of N equations (V is the number of discretization nodes) of index i of the type:

(19.40) )> (A.,aa‘f’l ) = 3" (By¥;) - ar i=1,.,N

j=1 J=1

where A;; and B;; are elements of matrices which are the discrete equivalent of the integrals
given in Equation (19.39).

To evaluate the integrals in (19.39) over any particular panel, a linear variation of the
potential and its normal derivative over the panel is assumed. In this manner, both ® and
0®/0n are continuous over the bubble surface, and are expressed as a function of the values
at the three nodes which delimit a particular panel. Obviously higher order descriptions are
conceivable, and would probably improve accuracy at the expense of additional analytical
effort and numerical computation time. The two integrals in (19.39) are then evaluated
analytically. The resulting expressions, too long to present here, can be found in Chahine et
al. (1988). .

In order to proceed with the computation of the bubble dynamics several quantities
appearing in the above boundary conditions need to be evaluated at each time step. The
bubble volume presents no particular difficulty, while the unit normal vector, the local surface
curvature, and the local tangential velocity at the bubble interface need further development.
In order to compute the curvature of the bubble surface a three-dimensional local bubble
surface fit, f(z,y,z) =0, is first computed. The unit normal at a node can then be expressed
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as: vf
(19.41) n= i‘ﬁﬁ,

with the appropriate sign chosen to insure that the normal is always directed towards the
fluid. The local curvature is then computed using

(19.42) C=V-n.

To obtain the total fluid velocity at any point on the surface of the bubble, the tangential
velocity, V¢ , must be computed at each node in addition to the normal velocity, Vo = 3¢/dn
n. This is also done using a local surface fit to the velocity potential, ®; = A(z,y, z). Taking
the gradient of this function at the considered node, and eliminating any normal component
of velocity appearing in this gradient gives a good approximation for the tangential velocity

(19.43) Vi=nx (V@ xn).

The basic procedure can then be summarized as follows. With the problem initialized
and the velocity potential known over the surface of the bubble, an updated value of 3¢/dn
can be obtained by performing the integrations in (19.39) and solving the corresponding
matrix equation (19.40). D®/Dt is then computed using a “modified” Bernoulli equation
(see Equation (19.51) below). Using an appropriate time step all values of & on the bubble
surface can then be updated using @ at the preceding time step and D®/Dt,

(19.44) %‘:_’ = %‘f + (%En + vt) Vo,

In the results presented below the time step, d¢, was based on the ratio between the length
of the smaller panel side, In;n and the highest node velocity, Vinaz. This choice limits the
motion of any node to a fraction of the smallest panel side. It has the great advantage of
constantly adapting the time step, by refining it at the end of the collapse — where Imn becomes
very small and V.. very large — and by increasing it during the slow bubble size variation
period. New coordinate positions of the nodes are then obtained using the displacement:

(19.45) dM = (‘?—‘:n + Ve + vo) dt,

where n and e; are the unit normal and tangential vectors. This time stepping procedure
is repeated throughout the bubble growth and collapse, resulting in a shape history of the
bubble.

19.4.3. Pressure / Velocity Potential Relation  Let us consider the case of a bubble
growing and collapsing in a nonuniform flow field (“basic flow”) of velocity Vg that is known
and satisfies the Navier Stokes equations:

Vo

(19.46) -a-t— +Ve-VVy = "%VPO + VV’Vo .
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Also assume that in presence of the oscillating bubbles, the resulting velocity field, given
by V, also satisfies the incompressible Navier Stokes equation:

(19.47) %‘:—- +V.VV= --:;VP+VV’V .
Both V and V), also satisfy the continuity equation. We can now define bubble flow

velocity and pressure variables, Vy, and A, as follows:

(19.48) Vi=V-V, B=P-P,

If we consider the case where “bdubble flow” field is potential® :
(19.49) Vi =V, Vi, =0,

and subtract (19.46) from (19.47) accounting for (19.49) we obtain

[a‘pb'l'%Ivblz‘{'VO'vb*'%] =V x (V x V).

(19.50) Ve =V

The assumption of potential “bubble flow” implies that, even though the basic flow is
allowed to interact with the bubble dynamics and be modified by it, no new vorticity can be
generated by the bubble behavior with the chosen model. Equation (19.50) can be integrated
to obtain an equation similar to the classical unsteady Bernoulli equation. For the particular
case of the Rankine vortex Equation (19.51) can be written in cylindrical coordinates, when
the “bubble flow” does not have any ey components:

o 19%¥ v
>-% H=t =0
In this case the Bernoulli equation is to be replaced by:
(19.51) 93%2 +=|Vi?+ —h_ constant in any radial direction.

Accounting for a.t-mﬁmty conditions, the pressure in the liquid at the bubble wall, Py,
given by (19.51) is related to ¥, and the pressure field in the Rankine vortex Py by:

(19.52)

19.4.4. Specialization to Axisymmetric Problems In axisymmetric problems, the
physical variables (velocity potential and pressure) are independent of the angular coordinate.
Thus the angular coordinate only enters the formulation through the argument of the Green's
function in Equation (19.39)

(19.53) G(MP)=1/|MP|.

The integration of these dependent quantities can be explicitly carried out. Let C represent the
trace of the geometry under consideration in a meridian plane. Let r,d,z be the cylindrical

3’Miaobvioulyadmplityin¢wh which nesds t0 be removed in future research on the subject. Section 19.8 presents
a first step in that direction.
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Fig. 19.3. Comparison between Rayleigh-Plesset solution and the azisymmetric BEM code 2DyunaFS
and the 3D BEM code 3DynaFS. Computations started with an initial bubble pressure 584 times
larger than the ambient pressure. a) Over bubble period. b) End of collapse.

coordinates of point M, running point on the boundary, and without loss of generality we
select the coordinates of P to be (R,0,Z). The integral equation (19.39)can then be written

(1954)  $(R,0,2)= [ 4(r.)r 33»{ (/ ” Gds) dowe ~ . ai‘:r / ™ Gdo dspe

In writing the above expression the fact that the normal to an axisymmetric surface is
independent of the angular coordinate has been used. Thus, integration over the angular
variable is reduced to evaluation of one integral

-1 il
4rlo \[R24r1-2rRcosl+(Z ~z)*’

2x
(1955) I= /o G(r,0,2 R, Z)d0 =

which is nothing but the complete elliptic integral of the first kind, K(m), with

(19.56) m= 4—’:}-; A= \/(R +r)2+(Z - 2)2.

The equation for the potential may then be written as:

(50 e 25

Further details of the method can be found in Taib (1985).

19.5. NUMERICAL RESULTS AND DISCUSSION

19.5.1. Validation of Numerical Codes The use of the Boundary Element Method
to study axisymmetric bubble dynamics has been validated by the various authors quoted
earlier. This has included both comparisons with a quasi-analytical solution for spherical

(19.57) 274(R,Z) = - jc é(r, 2)r af
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bubbles - Rayleigh-Plesset Equation (19.27) - and experimental validation for the relatively
simple cases of spherical and axisymmetric bubble collapse near flat solid walls. Figures 19.3a
and 19.3b show comparative results between the codes used below (axisymmetric 2DynaF$
and fully three-dimensional 3DynaF'S) and the semi-analytical results.

Comparison of the results of the 3D code used in the examples shown below against
previously published and confirmed results in the literature for the relatively simple cases
have been very favorable. For spherical bubbles, comparison with the Rayleigh-Plesset “exact”
solution revealed that numerical errors for a “coarse” discretization of a 102-node bubble (not
shown in the above figures) was about 2 percent of the achieved maximum radius, but was
very small, 0.03 percent, of the bubble period. The error on the maximum radius was less than
0.14 percent for a discretized bubble of 162 nodes (320 panels), and dropped to 0.05 percent
for 252 nodes (500 panels). Comparisons were also made with studies of axisymmetric bubble
collapse available in the literature (Guerri, et al, 1981, Blake et al, 1986, 1987), and have
shown, for the coarse discretization, differences with these studies on the bubble period of
the order of 1 percent. Finally, comparison with actual test results of the complex three-
dimensional behavior of a large bubble collapse in a gravity field near a cylinder shows very
satisfactory results, (Chahine, 1988, 1991). The observed difference in the period was shown
to be related to the confinement of the experimental bubble in a cylindrical container.

19.5.2. Bubble Capture

Large bubble growth rate, low surface tension case As expected from the mechanistic
considerations analysis presented in Sections 19.1.1 and 19.1.2 numerical simulations using the
fully three-dimensional numerical approach reveal potential for strong bubble deformation
during capture by a vortex. The numerical results indicate that this is the case for a very
wide range of bubble sizes and initial values of the pressure difference between the inside and
the outside of the bubble.

Figure 19.4 shows three-dimensional bubble behavior in the case where the ratio between
the pressure inside the bubble and the ambient pressure is significantly large, pi/pe = 584.3.
This would be the case where the bubble in equilibrium in a high ambient pressure environment
is suddenly subjected to the flow field of a vortex, as for instance when a propeller tip vortex
suddenly captures a cavitation bubble (see Maines and Arndt, 1993, and Green, 1991). In a
Cartesian system of coordinates, OXY Z, the bubble is initially centered at (0,0,0), and the
line vortex is located parallel to the Z axis, at X = X/Rnaz = 2 (two times the maximum
size, Rmaz, the considered bubble would have if allowed to grow under the same pressure
difference in an infinite medium). The core size considered here is 4Rm,.. With this geometry
the bubble center remains in the plane Z = 0.

Figure 19.4a gives a projected view of the bubble in the XOY plane at different instants.
The observer is looking down on the XOY plane from very far on the Z axis. The bubble is
seen spiraling around the vortex axis ( perpendicular to the figure) while approaching it. At
the same time, due to the presence of the pressure gradient, the bubble strongly deforms and
a reentrant jet is formed directed towards the axis of the vortex, thus indicating the presence
of a much larger dynamic pressure on the bubble side opposite to the vortex axis.

Figure 19.4b shows projected view of the same bubble in the YOZ plane seen from the 0X
axis. Here some moderate elongation of the bubble is observed along the axis of the vortex
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Fig. 19.4. 3D bubble shapes at various times. Bubble initially at the origin of the cartesien coordinate
system, and vortez at X = 2Rmaz. = 0.474, p;/Poc = 584.3, Rc/Rmax = 4. Projected view a) in
the XOY plane; b) in the XOZ plane.

as well as a very distinct side view of the re-entrant jet. This result is totally contrary to the
usually held belief that bubbles constantly grow during their capture until they reach the azis
and elongate along it.

Figure 19.5 shows in the XOY plane perpendicular to the vortex axis the motion of two
particular points on the bubble, A and B, initially along OY. Also shown is the motion of
the midpoint, C. While C seems to follows a path similar to the classical logarithmic spiral,
A and B can follow more complicated paths, even moving away from the vortex axis at some
point in time for case (b) where the vortex axis was initially at X = 1.

Small growth rate and surface tension Figure 19.6 considers the influence of bubble size
on bubble behavior during the capture process. In all three cases shown in the figure a ratio
between the pressures inside and outside the bubble equal to one is considered, pi/poo = 1.
In all cases, the viscous core radius is chosen to be R, = 2.2 mm, while the initial distance
between the vortex center and the center of each bubble is chosen to be {, ~ i.5R, = 3.2 mm.
The dimensions shown are normalized values with the initial bubble radius for each case. The
circulation in the vortex is chosen to correspond to a practical value for the case of a tip vortex
behind a foil, such as that used in the experiments described by Maines and Arndt (1993)
and Green (1991), T’ = 0.152 m?/s. Three bubble sizes are considered: 10 ym, 100 gm and
1000 um. As expected, bubble deformation increases with the bubble size. The deformation
is small for a,=10 pm, becomes very significant for a,=100 pym, and is extremely important
for a,=1000 gm. In all cases, the bubbles while remaining in the inviscid region, are seen to be
sheared very strongly by the flow. The smaller bubbles appear to deform in the expected way
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Fig. 19.5. Motion of the two points initially on azis OX, A and B, and the mid point C between A
and B, versus times. §i - 1.474, pi/Poo = 584.3, @/ Rmaz = 4. Vortez located at a) X = 2Rpmqz ; b)

X = Rmas.

in a shear flow. The computations were stopped when significant bubble shape deformations
necessitated finer time steps. The larger bubble case (¢,=1000 um) shows extreme bubble
elongation and wrapping around the viscous core region.

19.5.3. Multiple Bubbles One of the key question that one needs to address in
bubble/vortex interaction practical studies is how does a distribution of bubbles modify the
flow fieid in a vortex line. In order to address such a problem the program 3DynaF'S is being
modified for effective implementation on a supercomputer. Indeed one of the difficulties of
such a study is the required large number of discretization points which prevents significant
runs on typical memory and speed limited computers. Figure 19.7 shows a case run in the
case of a field of bubbles in absence of a vortex field on a Cray machine. In the figure case
two planes of symmetry were assumed to minimize computation times. In the presence of a
vortex line use of such a symmetry is not warranted since, due to various rates of rotation of
each b' .bble in the vortex field, the symmetry is not preserved during the bubble motion. In
addition, due to the high shear rates that bubbles can experience, a relatively large number
of discretization points is needed to describe each bubble.

Figure 19.8 shows the case of a 5-bubble configuration. This run has the advantage of
including both vortex / bubble and bubble / bubble interactions. All five bubbles are chosen
such that in absence of the vortex flow field, the pressures inside and outside each bubble
are the same and equal to 0.74 atm, p;/p,, = 1. The viscous core radius and the circulation
are again chosen to be in the same ranges as those in the experiments described by Maines
and Arndt (1993), and Green (1991). The viscous core is chosen to be R. = 2.2mm, while
I' = 0.1573 m?/s, Q = 0.872. The initial bubble centers are selected to be on OY axis at the
coordinates: Y = 0,2,3,4 and 5 mm. The vortex line is parallel to OX axis and is centered
on Y = 1.5 mm. As a result, bubbles No. 1, 2 and 3 are initially locatcd in the viscous core,
while bubbles No. 4 and 5 are located in the inviscid flow region. All five bubbles considered
have an initial radius of 100 um. Figure 19.8 shows contours of the bubbles as they rotate
around the vortex axis at various times This figure clearly shows the presence of a nonuniform
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20 FLUID VORTICES

5
ES - °
-5k
-1Sk 4
-25
-35 'l L. 2 3
-0 0 10 20 30 40 50 60
x/ag

Fig. 19.8. Dynamical behavior of 5 bubbles in a vortez line flow - Bubble contours at various
times. The vortez line is perpendicular to the page and centered on Y = 1.5mm. R, = 2.2mm,
I' = 0.1573m?/s. Q@ = 0.872. All bubbles have ag = 100um.

flow field. Indeed, Bubble No. 3 which is the closer to the region of highest angular velocity
of the “basic flow” is seen to swirl around the vortex center at the fastest rate, while Bubble
No. 2, which is the closest to the vortex center is seen to practically rotate around itself.
Similarly, the highest shear is seen to occur close to the viscous core edge where the pressure
gradients and their variations are steeper.

Since all bubbles were chosen to have the same initial radius and internal pressure, the
natural period of oscillation of each of the selected bubbles increases with the proximity to
the vortex axis. As a result, the farthest bubble from the axis, Bubble No. 5, collapses first
while stretching and deforming. In order to be able to continue the computation following
break up of a bubble, that bubble was removed and the computation was continued with the
bubbles left.

Figure 19.9 shows two thee-dimensional views of the bubbles before the collapse of bubble
No. 1. These views enable one to have a better idea of the bubble shape deformation and
elongation during the capture phenomenon.

Figure 19.10, courtesy of Sheldon Green, is an unpublished photo of a bubble in the
viscous core of the trailing vortex of a NACA 66-209 hydrofoil (see Green,1991, for details of
the experiment). The photograph is a double exposure, the time of separation between the
two pictures being 150 us. The three bubble shapes in the top of the figure are aligned along
the axis of the vortex. The diameter of these shapes is of the order or 200 ym. The bottom
two shapes are those of the same bubble at two instants 150 us, and illustrate very clearly
the large deformations of the bubble during its capture by the vortex. As in the numerical
simulations presented above, this behavior appears to be related to the large shear stresses
experienced by the bubble while approaching the vortex axis. In the first of the two pictures
the bubble is very elongated due to shear, while 150 us later, it appears to have grown in
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Fig. 19.9. 3D bubble shapes in the vortez line flowo field of Figure 8 before collapse of buble No. 1.
View from o) OZ azis, b) OX azis.

size — due to the pressure drop in the vortex,~ while conserving a strong deformation on its
downstream surface.

19.5.4. Bubble on Vortex Axis Let us consider now the case where the bubble is placed
at the vortex axis at ¢ = 0 and starts to grow due to the excess between the internal pressure
and the local ambient pressure. Such a problem was considered earlier by Crespo et al (1990)
who studied the dynamics of an elongated bubble. Unfortunately, his model neglected essential
elements in the bubble / line vortex dynamics: i.e. the presence of an azimuthal velocity flow
field, a rotational and viscous flow, and a pressure “well” on the axis. Crespo obtained a strong
jet which initiated at both extreme points of the bubble along the axis of symmetry. As shown
in Figure 19.11a such a behavior is reproduced using the program 2DynaF$S when the vortex
flow field is neglected. However, the opposite effect is in general obtained when the rotation in
the vortex flow is included. Figure 19.11b illustrates this for particular values of the circulation,
T, (or the swirl parameter, ) and the normalized core radius, R, = R./Rma=. Modifications
in the results when 2 and R, are changed are discussed in the following paragraph.

In both cases shown in Figures 19.11a and 19.11b the initial bubble shape elongation ratio,
bubble length to radius, was three. It is clear from the comparison that the swirl flow has a
conclusive effect on the bubble dynamics. Bubble surface portions away from the vortex axis
experience much higher pressures than bubble surface portions on and close to the vortex axis,
and therefore move much faster during the collapse phase generating, instead of the sharp jets
on the axis as in Figure 10a, a constriction in the mid-section of the bubble. This generates
an hourglass shaped bubble which then separates into two tear-shaped bubbles.

In the following figures 19.12a — ¢, the dynamics of initially spherical bubble positioned
at t = 0 on the vortex axis are studied. The initial internal pressures inside the bubbles are
taken to be larger than the pressure on the vortex axis, and the bubbles are left free to adapt
to this pressure difference. The figures strongly indicate that the bubble behavior depends
significantly for a given value of the swirl parameter, , on the normalized core radius R,
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Fig. 19.10. Double ezposure photo of a bubble in the viscous core of the trailing vortez of a VACA
66-209 hydrofoil (see Green, 1991). Time of separation between two ezposures =150 us. Scale 195
um./cm. R, = 6.810%, T' = 0.232m?/s. Courtesy of Sheldon Green.

ratio of R, to Rpmaz, the maximum radius the bubble would achieve if it was in an infinite
medium with an ambient pressure equal to that on the vortex axis. In all cases where the
bubble maximum radius, Rma- is larger than R. it appears that the bubble tends to adapt
to the vortex tube of radius R.. This could lead to various bubble shapes as shown in the
following figures ending up with a very elongated bubble with a wavy surface for large values
of Rmaz/R..

Figures 19.12a — ¢ show bubble contours at various times during growth and collapse for
increasing values of the core radius, R., and decreasing values of p;/p.. Also shown are
selected 3D shapes of the bubbles at various times which have the advantage of being much
more descriptive. It is apparent from these figures, that during the initial phase of the bubble
growth, radial velocities are large enough to overcome centrifugal forces and the bubble first
grows almost spherically. Later on, the bubble shape starts to depart from spherical and to
adapt to the pressure field. The bubble then elongates along the axis of rotation. Once the
bubble has exceeded its equilibrium volume, bubble surface portions away from the axis -
high pressure areas - start to collapse, or to return rapidly towards the vortex axis. To the
contrary, points near the vortex axis do not experience rising pressures during their motion,
are not forced back towards their initial position, and continue to elongate along the axis.
As a result, a constriction appears in the mid-section of the bubble. The bubble can then
separate into two or more tear-shaped bubbles. It is conjectured that this splitting of the
bubbles is a main contributor to cavitation inception noise. This behavior is very similar
to that observed for bubble growth and collapse between two plates (Chahine, 1989), which
results in the formation of a vortex line! (see Figure 19.12).

Keeping 2 constant while reducing the core size R. has the effect of steepening the radial
pressure gradient along the bubble surface and increasing the rotation speed inside the viscous
core. This enhances the deviation of the bubble shape from a sphere, and increases the
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Fig. 19.11. Comparison between the contours of an elongated bubble during its collapse in the absence
and in the presence of swirl. Initial elongation ratio of 3. pe/pi = 3.27. a) No swirl. b) Q@ = 0.36.
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Fig. 19.12. Bubble dynamics on the azis of a vortez line. Left side shows 3D shapes at selected times.
Right side shows bubble contours at increasing times. T = 0.005m?/s, R, = 100um. a)pi/Poo = 2,
Rc/RO =1, b) Pi/Pco =2, Rc/no =1, c)ﬂlpoo =1, Rc/Ro = 0.57.
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Fig. 19.13. Bubble collapse between two solid parallel plates resulting in the formation of an hourglass
shaped bubble and a line vortez perpendicular to the two plates.

Fig. 19.14. Cavitation bubble shapes observed at the ezit of a vortez tube.
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Fig. 19.15. Influence of solid wall distance on bubble collapse in a line vortez. Q = 475, p;/pac = 584,
ac = 1.18. L/Rpmaz = a) 4; b) 5; c) 2.5.

centrifugal force on the fluid particles closer to the vortex axis. This has the consequence of
increasing the elongation rate of the bubble and results in more and more complex dynamic
shapes of the elongated bubbles. The bubble can then become subdivided into three, four
or more satellite bubbles during the coliapse. The elongated and wavy shapes obtained have
been observed in unpublished tests that we have conducted on cavitation on the axis of the

vortex formed in a vortex tube (see Figure 19.14).

19.5.5. Bubble on Vortex Axis Near a Wall The series of Figures 19.15a — c show the
collapse of a bubble trapped in a line vortex perpendicular to a solid wall at various distances
from this wall. The boundary is at y = 0 and its distance to the initial buvole center, L, is
normalized with Rpnes. The presence of the wall is accounted for by the incorporation of an
image bubble. The uneventful growth phase ends with the elongated spheroid shaped contours
shown at the center of each figure. Then, the overall bubble behavior appears to be similar to
that in absence of the wall; namely, bubble elongation along the axis followed by a splitting
into two bubbles. The presence of the wall is felt by an asymmetry between the two secondary
bubbles. In all cases, computation was stopped at bubble splitting. A special treatment to
the bubble shape discretization needs to be done after that point (panel removal) and is being
implemented. It is speculated, based on previous bubble dynamics observations, that very
strong jets bringing back the two pointed tips (in the splitting region) of the two secondary
bubbles inside each bubble will be generated. This phenomenon is expected to be stronger
for the secondary bubble close to the wall since that bubble has a much more elongated tip.
Figure 19.16 shows the influence of the circulation parameter, £, on the bubble behavior
for fixed values of the core radius and the distance to the wall. This figure contains significant
information on the scaling of bubble behavior in a vortex flow. Three characteristic dimensions
of the bubble are shown as a function of time. These are the bubble radius along the plane
perpendicular to the line vortex, R,, and the distances between the initial bubble center
and the two extreme points on the vortex axis, Zn(1) and Z,(100). Figure 19.16 shows
time variation of these three quantities normalized with Rmss. Time is normalized with the




S

BUBBLE INTERACTIONS WITH VORTICES 27
7
Rcore=0.4, L=4 Guagnass
6 + o= = ® CuagelY
e S e e Ougts
gs 4. = =G &= 8 Quggad
g} .
H.s T — —— g e O @ &
320 = ———, "™ B e e o @ OF
14
01 + et v‘M‘”
0.00 0.50 1.00 1.50 2.00 2,50
Time

Fig. 19.16. Influence of Q on the motion of bubble arial and longitudinal dimensions versus time for
a bubble trapped in a line vortez perpendicular to a solid wall. Distances are normalized with R,z
and times are normalized with Rayleigh time. p;/poo = 584, 6./ Rmes = 0.4, L/Rmaz = 4.

Rayleigh time based on Rme: and the pressure difference between P,, and the pressure on
the vortex axis. It is apparent from this figure that R, follows the classical Rayleigh model.
Variations of  between 0.1 and 0.94 modify the normalized bubble period by less than 10
percent. One should notice, however, that bubble period is here defined as the time needed for
the bubble to subdivide into two secondary bubbles, and that no bubble surface instability,
as described earlier, occurred in that case. Bubble elongation, on the other hand, depends
strongly on , as can be seen from the Z, curves. The elongation of the bubble part close to
the wall is seen to be affected for large values of Q.

19.6. VALIDATION STUDY: BUBBLE / VORTEX RING INTERACTION.

19.6.1. Experimental Study In order to validate the numerical studies on bubble /
vortex interactions, a fundamental experimental and numerical study was conducted. This
consisted of the controlled observation of the interaction between a vortex ring and a bubble.
The results of the experiment were then compared with those obtained with the 3D free surface
dynamics numerical code 3DynaF'S described above (Chahine et al, 1993).

A vortex ring was generated in a Plexiglas tank using a cylinder equipped with a 2.5 em
radius piston. The cylinder has an sharp lip exit to enhance the roll up of the fluid vortex
generated at the lip. This results in a vortex ring with a diameter slightly larger than that of
the cylinder (Kalumuck and Chahine, 1990). The water in the tank is degassed using a vacuum
pump and a spark generated bubble is produced using two tungsten electrodes submerged in
the tank which can be manipulated from outside the tank to be placed where desired. The
spark is produced by discharging during a very short time period (=~ 10~*s) a high voltage
(6000 volts) from a series of capacitors. The interaction between the generated ring and bubble
was then observed. A spark generating the bubble has the advantage of simulating cavitation
bubbles and allowing one to choose precisely when and where the bubble is generated, which
is essential to coordinating the positions of the bubble and the ring, and the starting time of a
high speed camera. A triggering line allows one to synchronize the departure of the piston and




28 FLUID VORTICES

Fig. 19.17. Particle trajectory around the ring viscous core.

the triggering of the spark generator using pressure transducers to precisely detect the vortex
ring motion. As the piston starts to move down, a pressure pulse is created in the tank by
the fluid impulsive motion. This is detected by the transducer probe and amplified to trigger
a delay generator. The output signal (a very short pulse) then triggers the spark generator.
Visualization was performed using a HYCAM I high speed camera capable of 11,000 frames
per second.

On several of the motion pictures taken very small gas bubbles were present under the
piston. The visualization of the motion of these bubbles allows one to observe their trajectory
around the vortex ring. The existence of a “viscous core” was apparent from the velocity
profile obtained by tracing the microbubbles’ motion, whether or not the vortex ring was
cavitating. For the cavitating cases, the “viscous core” surrounded the vaporous/gaseous
core. A typical trajectory of the small bubbles is shown in Figure 19.17. Also shown in this
figure is a sketch of a bubble and the particle trajectory line (T'). Figure 19.17 also shows the
geometric characteristics of the bubble/ring positions. D, is the distance between the bubble
center and the viscous core center when the bubble is at its maximum volume and has the
equivalent maximum radius Rmax. D; is the horizontal distance between the bubble and the
center of the viscous core. The normalized quantities D; = D;/Ruax and D; = D;/Riax
characterize the bubble / vortex ring interactions. As expected, it is observed that smaller
D, and D; correspond to stronger interactions and larger bubble deformations.

Figure 19.18a — ¢ drawn in the ring reference frame shows the bubble motion and
deformation with time for three selected cases of increasing bubble/shear interaction. The
electrodes position shown on each graph is the one at the instant of the spark generation. The
vortex ring side view indicates the position of the reference frame. .

As can be seen from the pictures in Figure 19.19a ( D; = 2.16, D; =0, V,;n, = 0.28m/s)
and from the contours in Figure 19.20a , the bubble remains practically spherical during its
growth. The interaction is weak due to the relatively large distance between the bubble and
the ring, and also due to the relatively small circulation of the ring. The first collapse is too
fast, and no significant deformation of the bubble is seen until the rebound when a reentrant
jet appears on the bottom face of the bubble followed after the rebound by an outgoing
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Fig. 19.18. Bubble contours at various times from High Speed sequences of Figure 19.19. a)D; = 2.16,

D; = 0, Viiny = 0.28m/s, b)

Viring = 0.82m/s.

0.78m/s, ¢)D; = 1.1, D; = 0.37,

D; = 238, D; = 1.5, Vring
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jet on the top face. It appears that during the first bubble oscillation period the bubble
translation velocity is smaller than the vortex generated fluid velocity. The bubble therefore
sees a flow moving upward. The jet direction (including the reentrant and the outside jet) is
on a pathline of shear flow, and the bubble motion after the collapse follows a particle path
line while oscillating and cutting itself in two.

In Figure 19.195 (D; = 2.38, D; = 1.5, Vyiny = 0.78m/s) the bubble first grows spherically,
then it starts to stretch into an ovoid shape: the bottom face is less curved and the top face
more curved than in the spherical case. Here the distance D, is not too different from the
previous case but the circulation in the vortex ring is about three times larger. When the
bubble volume decreases, the stretching due to the shearing action becomes more pronounced
and a constriction along the bubble periphery appears along the pathlines (T). The bubble
then rebounds with a dumbbell shape.

In Figure 19.19¢ (D; = 1.1, D; = 0.37, V,in, = 0.82m/s) the bubble appears to be
stretched more and more in the pathlines’ direction during its growth, with the top region
more stretched than the bottom one, and the top right part growing more than the left one.
When the bubble collapses, its left side continues to be sheared by the flow into a pathline
direction and a ‘beak’ forms at the top left part and becomes more pronounced once the
volume of the bubble starts to decrease. Then, there is a constriction all around the bubble
which appears first on the top face of the bubble. The bubble then cuts itself in twc and
rebounds as two side-by-side very distorted bubbles (or bubble clouds). The left one then
touches the cavitating .ing and splits again into two parts. The deformations of the bubble
are more significant in this case than in the two previous cases, because the bubble is closer
to the center of the ring core and experiences a strong shear flow. In addition, there appears
to be a “venturi effect” between the bubble and the viscous core that further increases the
stretching of the left part of the bubble

Within the margin of errors of the measurements, comparison of the time variation of the
average radius of each bubble shows no significant effect of the presence of shear on the bubble
period. However, indications of a lengthening effect of the bubble period can be seen on the
characteristic distances between the bubble ‘center’ and the two upstream and downstream
points along a particle pathline (direction (T')) . This effect however seems small in the cases
presented here and should be investigated further.

Physical explanations The observations made above can be qualitatively understood by
considering the velocity and pressure fields around the bubble. The motion of each point
on the surface of the bubble is the result of the combination of the underlying (shear) fluid
velocity and of the velocity due to the bubble growth or collapse. The effect of the underlying
fluid flow (whose characteristic speed is about 2m/s) is minor during initial bubble growth
and later bubble collapse phases, but becomes most important at the end of the growth and
at the beginning of the collapse where bubble wall velocities reach a minimum. Indeed, right
after the spark generation, the speed of each point of the bubble surface is very high (about
40m/s). It then decreases to zero at about the maximum radius, and then increases during
the bubble collapse. For a bubble in a uniform flow, the existence of the flow reflects on the
bubble shape by a larger bubble growth in the downstream direction and by a flattening of
the bubble shape in the upstream direction. Later on due to inertia, the downstream part
that has extended further collapses faster forming a reentrant jet directed upstream in the




31

BUBBLE INTERACTIONS WITH VORTICES

‘

0

S v
S
n g
o
S
!0
w0
1.u__
N 2
LN
S5
(2]
S
g -
..._
TR
B~
o_w.l.
Lo
gl
28
&
8 -
LR
~
S E
2 o0
/7.
knu
= |
<
s ¢
s &
T
@ o
Y -
|~
M:
Sy
s -
L oD
Lo A |
-—
=
.m_x
m.D
n &
- o
S 2
Iy g
. Q0
o &N
~t o
S
. o™
b0 8
e o>




32 FLUID VORTICES

plane of symmetry of the bubble.

When the flow is not uniform, a similar phenomenon occurs but is stronger on one side of
the bubble than on the other due to the typical asymmetry of a shear flow. In addition,
the ‘possibility that the underlying shear flow becomes at some point during the bubble
history stronger than the bubble wall velocity creates the possibility of a jet generated by the
underlying flow, which can be opposite to the one described above and directed dowustream.
In the case of the figures shown here, the velocity profile seen by the bubble decreases from
left to right. When the bubble starts to grow, the speed of each point is much more important
than the velocity of the fluid flow: the bubble is therefore almost spherical. Then, when the
speed of each point decreases, the influence of the fluid flow increases. The top part of the
bubble grows more than without the presence of the basic low and, due to the shear, the
left part grows more than the right one. In addition, the top face is more stretched than the
bottom face because on the top face the speeds add up, while they subtract on the bottom.
The opposite is true during the collapse where velocities add up on the bottom part of the
bubble and subtract on the top.

As the fluid flow moves upward in the case shown in the figure, the reentrant jet is expected
to appear on the top face. However, due to the strong shear, the left part of the bubble is
prevented from collapsing forcing a compensating middle of the bubble constriction all along
the bubble, with a tendency to form reentrant jets on both ends of the bubble along the
pathline. This constricted shape of the bubble is similar to that obtained with a bubble
collapsing between two walls.

19.6.2. Numerical Modeling In order to model the bubble/shear flow interaction
described above, the Boundary Element Method (BEM) code described above, 3DynaFs,
was used. The flow field of the moving vortex ring was modeled using the following classical
expression for the velocity potential at the point M produced by a vortex ring (R):

(19.58) M) = —— // "I;;gf

where Sg is any surface limited by the ring vortex ring line (R), and e, is the tangential
direction along (R). This enables one to determine the velocity and pressure field outside of
the viscous core region of the vortex ring.

Figure 19.20¢ shows simulations for these same experimental conditions as in Figure 19¢
with ' = 0.12m?/s, while Figures 19.20a and 19.20b show the same conditions but for
' = 0.25m3/s and T = 0.10m?/s. As in the experiment Figure 19.20c shows elongation
of the left side of the bubble in the shear flow direction. The formation of a beak at the
end of the bubble growth is also evident but not as pronounced as in the experiment. Later
a constriction in the bubble shape along the fluid pathline is also apparent. The overall
comparison between this numerical modeling and the experiment is encouraging. However,
the strong shearing effect on the beak preventing the bubble top from collapsing from the left
side is not as strongly reproduced in the numerical simulation. This is most probably due to
the fact that the simulation neglected the vortex bubble ring behavior and did not include any
modification of the flow due to the growth of the ring bubble near the spark-generated bubble

creating the venturi effect we mentioned earlier.
At the smaller circulations the tendency of the bubble to elongate and then cut itself into
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Fig. 19.20. Numerical simulations of bubble / vortez ring interaction.. D; = 1.1, D; = 0.37,
Vring = 0.82m/s.; T = @) 0.025m3/s; b) 0.10m?/s; ¢) 0.12m?/s which corresponds to Figure 19.18¢.

two is also clearly apparent as in the experiments.

19.7. OTHER RELEVANT STUDIES

One other relevant aspect of bubble / vortex interactions concerns the case where the gaseous
phase or cavitation is so developed that the vortex center is filled with gas or vapor. The
dynamics of such cavities have been considered in the particular cases of cavitating vortex
rings and well developed tip vortices. As for the studies presented above, various simplifying
assumptions were made by the various authors in order to address these problems. For the
sake of brevity we will not consider these studies here. However, we refer the readers to the
following publications on cavitating vortex rings (Chahine and Genoux, 1983, Genoux and
Chahine 1984, Chahine and Kalumuck, 1988 and Kalumuck and Chahine, 1990). Concerning
elongated developed tip vortices, the readers can consult the following publications (Bovis,
1980a, Ligneul and Latorre, 1989, and Ligneul, 1989).

19.8. FULL VISCOUS INTERACTION BETWEEN A CYLINDRICAL
BUBBLE AND A LINE VORTEX
One weakness of the numerical approaches presented above is the fact that, while the influence
of the flow on the bubble was fully accounted for, the modification of the flow by the bubble’s
presence and dynamics was restricted to the case where the “bubble flow” was potential
(see Section 19.4.3). In the present section, we will remove this restriction in the simple
but interesting case of the interaction between a cylindrical bubble and a line vortex. This
corresponds to cases such as described in the previous section, where the line vortex has the
central part of its viscous core gaseous or vaporous. As illustrated below, such an analysis
is important to determine criteria for unstable bubble growth (cavitation inception), and




34 FLUID VORTICES

to describe how bubble dynamics affects the viscous flow itself. To do so, we consider the
case where an axisymmetric elongated bubble of initial radius a, is located on the axis of a ‘
fully viscous line vortex. For illustration, we consider the case where, at ¢ = 0, the vortex

line is a Rankine vortex. From there on, the vortex diffuses with time and interacts fully

with the bubble. The generated flow satisfies the axisymmetric incompressible Navier-Stokes’

equations in cylindrical coordinates. With all derivatives with respect to z and 6 being null,

the continuity and momentum equations reduce to:

14
(1959) ;E (T'Pur) =0.
Ou, Ou, u® —130p 219
(1960) m*wg'T-TE“Eb7<ﬂ
(19.61) 33':0 + u,aa':o + u,ruo Y5 [—-—(rug)]

Denoting the radius of the bubble as a(t), and its time derivative, a (¢), the continuity
equation leads to:

BRI0LI0)

(19.62)
-
Replacing u, by its expression in 19.60 and 19.61 one obtains:
2 o2 9 .

1 02 a‘a 10p

(19.63) - [a a+a —u, 7--] = -;.6?,
Ouy Ouy
19.64 b A Rt Lo

(19.64 28 () 2 [0,

This set of coupled equations allows one to describe both the bubble dynamics and flow field
modification with time accounting for the interaction with the bubble.

19.8.1. Method of Solution In order to obtain a differential Equation for the bubble
radius variations, similar to the Rayleigh Plesset Equation (19.27), Equation (19.63) is
integrated between r = a(t) and a very large radial distance r = R;,y, beyond which the
vortex flow is assumed to be inviscid, and that due to a line vortex of circulation I'. This
leads to an integral term conta.ining ui. In order to obtain this term, a space and time
integration of Equation (19.64) is needed. This is obtained using a Crank-Nicholson finite
difference integration scheme of the partial differential equation (19.64). To do so, the doma.m
of integration is made time independent using the variable change,

(19.65) s= __)

The integration region becomes for all times [1; 3in] , With Rins(t) = a(t)sins- With a, @ known ‘
at a given time step through the solution of Equation 19.63, Equation 19.64 becomes:
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19.8.2. Initial and Boundary Conditions The initial conditions considered are as
follows. For the bubble,

(19.70) | a(0) =a,, a(0)=0.

For the line vortex, the equation at £ =0, is that of a Rankine vortex as described in Section
(1.1.14), with

(19.71) u(r,t=0)=0.

In addition, the following boundary condition, similar to Equation (19.38), is imposed at
the bubble interface:

(19.72) Pa) =+ (2) - 24225,

where p is the dynamic viscosity, and the gas compression law is given by:

(19.73) Ps = Py (a°)u-

In addition, the following ‘at-infinity’ condition is imposed on the pressure at the dxsta.nce,
Riu] .

2
(19.74) P(Riat) = Poo — 2P (E}'s'.i'?(_ti) :
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Fig. 19.21. Dynamics of the interaction between a cylindrical bubble and a line vortez. I' =
0.5 m¥/s, P,, =5x103Pa, P.,=1.3x10°Pa. a) Bubble radius, value of maximum azimuthal
veloCity ugmax, and position of Rgmax. b) Bubble radius versus time with and without viscous
interaction. -

19.8.3. Some Preliminary Results Figures 19.21a and 19.215 illustrate both the bubble
[ vortex flow field interaction and a case where there is a need to include this full interaction
in the dynamics. In these two figures, the bubble has an initial radius of 1mm, while the
viscous core of the vortex has an initial radius of 1cm. The initial circulation in the vortex
is 0.5 m?/s, and the initial pressure in the bubble is 5x10%Pa, while the ambient pressure
is 1.3%10°Pa. Therefore, the buzble starts its dynamics by collapsing. Figure 19.21a shows
simultaneously three characteristic quantities of the problem versus time. The first quantity
is the bubble radius versus time, while the other two quantities are the radial position, Ry pay,
of the maximum azimuthal velocity, ugmay, and the value of this velocity. In the previous
sections, these two last quantities remained constant with time. A very importaat first result
very clearly shown in Figure 19.21a is that both the position of Rgmay, and the value of ugmes,
both directly depend on the variation of a(t). The viscous core (of radius Rymas) is seen to
decrease with the bubble radius during bubble collapse, and to increase with the bubble radius
during bubble growth. This tendency of the viscous core to get displaced with the bubble
wall, corresponds to intuition, but is proven numerically to our knowledge for the first time
here and in Desgrees du Lou et al., 1993.

Viscous effects appear more prominently when following the bubble dynamics over more
than a single period of oscillation. Both maximum values of Ry, and %gmax are seen to
decrease with time. Through conservation of momentum, the azimuthal velocity follows an
tendency opposite to the core size. As the bubble wall moves inward the viscous core shrinks,
simultaneously increasing the tangential velocity to a maximum when the bubble reaches
maximum size. As the bubble grows again, the core expands and the tangential velocity
decelerates to a minimum at the maximum bubble radius. When the fluid particles are pulled
in towards the vortex axis they accelerate tangentially. This is similar to the phenomenon of
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Fig. 19.22. Dynamics of the interaction between @ cylindrical bubble and a line vortez.
Pozi, =7x10°Pa. a) Influence of the initial bubble pressure, P,o, on bubble radius and posi-
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Pyo =1.5%10%Pa.

vortex stretching .

Figure 19.21b shows the importance of the inclusion of full viscous flow / bubble interaction
in the dynamics. One graph in the figure considers the case where the underlying flow field is
forced to remain that of a Rankine vortex. In that case, as apparent in the figure, the bubble
oscillations are repeatable with time, and no viscous decay of the amplitude of the oscillations
arc visible. To the contrary when the underlying flow is modified through viscous diffusion
and interaction with the bubble, the bubble radius oscillations decays very much after the
first collapse, and the flow field characteristics are modified as described in Figure 19.21a.

Figures 19.22a and 19.21) show, respectively, the influence on the dynamics of the initial
gas pressure inside the bubble, P,,, and the ratio of initial core radius to initial bubble radius,
R./a,. For an initial pressure on the vortex axis of 7x10%Pa, Figure 19.22a shows the dynamics
of the bubble and the viscous core size when the initial pressure in the bubble decreases from
5x10%Pa to 1.5x10%Pa. For P,, = 5x10°Pa the bubble collapse is very weak, and the core
radius is seen to follow the bubble wall oscillations. For all three other larger values of P,,
starting from P,, =4x10°Pa the bubble collapse is strong enough to entrain a full collapse
of the viscous core which practically disappears (maximum azimuthal velocity at the bubble
wall) during the later phases of the bubble collapse. This is followed by a much stronger
rebound of the viscous core than the bubble rebound.

Figure 19.22b shows a behavior similar to the previous figure when the ratio, R./a,,
increases. Here again a strong core collapse and rebound is observed when the initial distance
between the bubble wall and the core radius is decreased.
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trend is to address the problems by a two-pronged effort involving numerical and experimental
simulations. This is made possible by the development of advanced high speed computers
which render direct numerical simulations possible in reasonable amounts of time. The studies
presented above addressed various aspects of the problem, namely bubble capture by the
vortex and bubble dynamics in the vortex flow field. Very much lacking and presently a
subject of active work at our research center is the influence of the bubble’s presence on
the vortex behavior. It is hoped that a matching between a viscous solver, at least in the
vortex viscous core region, and a bubble dynamics solver such as 2DynaFS or 3DynaF$S
would enable one to describe with some acceptable accuracy the full interaction between the
bubbles and the vortex flow field. This is of great importance since it would enable the user
to understand the mechanics involved thus enabling one to manipulate the phenomena for
technological advantage such as is bubble drag reduction or cavitation inception delay.
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Cavitation Dynamics at Microscale Level

Georges L. Chahine
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Cavitation in a liquid is known for its deleterious
effects, namely erosion, noise and loss of perfor-
mance. In a mechanical heart valve, stresses generat-
ed by cavitation could lead to catastrophic failure.
These deleterious effects are directly connected to the
dynamics of pre-existing microscopic nuclei in the
liquid medium. To highlight this, a selective review
of the dynamics of the bubbles at the microscopic lev-
els is considered here; the various aspects of the prob-

Cavitation and bubble dynamics have been the sub-
ject of extensive research since the early works of
Besant (1) and Lord Rayleigh (2). The phenomenon has
been studied mostly for hydrodynamic applications,
where its presence is associated with deleterious
effects; i.e. performance deterioration, material ero-
sion, and noise generation. More recently, cavitation
has been studied for useful purposes including sound
generation, cutting, drilling, cleaning, enhancement of
mixing and chemical reactions, emulsification, etc. (3-
8).

This article studies the damaging effects of cavitation
on implants such as mechanical heart valves, and its
negative effects on biological cells and tissue in vivo. In
both these cases stresses generated by cavitation lead to
undesirable effects; in a mechanical heart valve, failure
of the valve could result from the development of
cracks, while cells could be damaged or induced to col-
lect around bubbles.

This presentation does not intend to be a complete
and inclusive review of.the phenomenon of cavitation.
Instead it will consider some aspects of the subject rel-
evant to cavitation erosion from a microscopic point of
view of the bubble dynamics. Our aim is to give an
overview of the problem areas where significant
knowledge has been accumulated and to discuss
important aspects of the dynamics which either have
not yet been addressed properly or are the subject of
on-going intensive research.
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lem are highlighted and briefly addressed; new areas
of research in non-spherical and bubble cloud
dynamics are then considered. The importance of the
inclusion of these collective and non-uniform flow
effects in the dynamics of bubbles in a realistic cavi-
tating flow field is also elucidated.
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Cavitation inception

Background

Despite a large number of investigations and publi-
cations on the subject - including several well docu-
mented books and review articles (6-9) - the funda-
mentals of cavitation remain relatively poorly
understood. In order to achieve a cavitation-free design
of a submerged body (such as a valve, propeller, etc.),
or to simulate cavitation and test a model scale in a lab-
oratory environment, it is necessary to establish criteria
for cavitation inception, and to define scaling parame-
ters between model and full scale. From talking to engi-
neers and practitioners of fields where cavitation is a
problem, the most commonly used definition of cavita-
tion is based on an over-simplification that serves the
purpose in most engineering cases but could lead to
erroneous conclusions if used to explain or model new
problems areas. This traditional engineering definition
is that a liquid flow experiences cavitation if the local
pressure drops below the liquid vapor pressure, p,.

Definition of the cavitation number

A dimensional analysis of the flow around an obsta-
cle (e.g. foil or a valve) of streamwise and transverse
characteristic length scales, L and W, shows that the
pressure, p,,, at any point M, can be written as a func-
tion, 7, of the following variables:

pm=F (P_oLWp,V_p), 1)

where a is the incidence angle of the flow relative to the
obstacle, P_ and V_, are the characteristic pressure and

© Copyright by ICR Publishers 1994
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Figure 1: Curves of bubble static equilibrinm.

velocity of the flow, respectively, and p and p are the
liquid density and kinematic viscosity, respectively.
Based on the above engineering definition of cavita-
tion, from a cavitation inception standpoint, any pres-
sure, p,4, in the liquid flow is important only in terms of
the pressure difference, p,, - p,, since the liquid cavi-
tates when p,, = p,. In this case, Equation (1) becomes
at the inception of cavitation:

W, pV_L o
@ ) or o=rlas). @

Lo v

Vv

P_-P (

R, is the Reynolds number, G is a geometric character-
istic (shape parameter) of the obstacle, and o is the
“cavitation number” defined as:

G = p [ad p v2
V2pV.,
Scaling various cavitation experiments or a model con-

figuration to a full scale configuration is obtained by
conserving o.

3)

Presence of cavitation nuclei

The above definition of cavitation inception is only
true in static conditions when the liquid is in contact
with its vapor through the presence of a large free sur-
face. For the more common condition of a liquid in a
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flow, or in a biological application, liquid vaporization
can only occur through the presence of “micro free sur-
faces” or microbubbles, also called “cavitation nuclei”.
Indeed, a pure liquid free of nuclei can sustain very
large tensions, measured in hundreds of atmospheres,
before a cavity can be generated through separation of
the liquid molecules. Therefore, any fundamental
analysis of cavitation inception has to start from the
observation that any real liquid contains nuclei which
when subjected to variations in the local ambient pres-
sure will respond dynamically by oscillating and even-
tually growing explosively (i.e. cavitate). A more pre-
cise definition is presented in the next section.

Cavitation inception appears under several forms,
the most recognized being (14):

(a) Explosive growth of individual bubbles,

(b) Sudden appearance of transient cavities or “flashes”
on boundaries,

(c) Sudden appearance of attached partial cavities, or
sheet cavities,

(d) Explosive growth of bubble clouds, behind attached
cavities or a vibrating surface.

(e) Sudden appearance of rotating filaments, or vortex
cavitation.

Upon further analysis, all these forms can be related
to the explosive growth of pre-existing nuclei in the lig-
uid when subjected to pressure drops generated by var-
ious forms of local pressure disturbances. These are
either acoustically imposed pressure variations (ultra-
sound applications), uniform pressure drops due to
local liquid accelerations, or strongly non-uniform pres-
sure fields due to streamwise or transverse large vorti-
cal structures. The presence of nuclei or weak spots in
the liquid is therefore essential for cavitation inception
to occur when the local pressure in the liquid drops
below some critical value, p, which is addressed next.

Bubble static equilibrium
The first level of sophistication for the definition of a
cavitation inception criterion is based on the concept of
static equilibrium of a bubble in a liquid. The criterion
predominantly used is based on a spherical bubble
model, even though it applies only to a limited number
of the cavitation forms listed above. In this model, the
bubble is assumed to contain non condensable gas of
partial pressure, P, and vapor of the liquid of partial
pressure, p, (6-9). 'lxherefore, at any point M on the bub-
ble surface, the balance betv-een the internal pressure,
the liquid pressure, and surface tension can be written:
2y
PLo=pv+P80_R_o , @
where P, is the pressure in the liquid, vy is the surface
tension parameter, and R is the bubble radius.
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Figure 2: Influence of viscoelastic properties on spherical bubble dynamics. A, and A, correspond to Newtonian fluid. a) Bubble oscil-
Iations case; A, = 2. b) Bubble collapse case; A, = 10°. Reprinted from (10).

If the liquid ambient pressure changes very slowly,
the bubble radius will change accordingly to adapt to
the new value. This is accompanied by a modification of
the pressure inside the bubble. The vaporization of the
liquid at the bubble-liquid interface occurs very fast rel-
ative to the time scale of the bubble dynamics, so that the
liquid and the vapor can be considered in equilibrium at
every instant, and the partial pressure of the vapor in the
bubble is always constant. On the other hand, gas diffu-
sion occurs over a much longer time scale, so that the
amount of gas inside the bubble remains constant. This
results in a gas partial pressure which varies with the
bubble volume. Since wee are interested in a quasi-steady
equilibrium, P, is considered to follow an isothermal
compression law, and is related to the reference value,
P, and to the new bubble radius R, through:

R\’
I‘.“8 = Pgo (E) . (5)
The dynamic equation at the bubble wall becomes:

R,\*> 2y
pL(R)_Pv"-Pgo(F) ~ E’ (6)

where the notation, P, (R), is meant to associate the lig-
uid pressure, P, to the bubble radius, R.

An understanding of the bubble stable equilibrium
can be obtained by considering the curve, P;(R). As
illustrated in Figure 1, this curve has a minimum below
which there is no equilibrium bubble radius. Only the
left side branch of the curve corresponds to a stable
equilibrium.

If the pressure in the flow field drops below the min-
imum of the curve, or critical pressure, p,, an explosive
bubble growth (cavitation) is provoked. This provides
an improved definition for cavitation inception which
depends on the size of the nuclei. The “critical pres-
sure” is obtained by solving for the minimum of P, (R),
using Equation (6) and can be expressed as:

4
=p,- —, @
Pe=Po 3r,
where y is the surface tension parameter, and r, is the
“critical radius” given by:

For a given ambient pressure, P, , any bubble larger

| |
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thure 3: Emission of a shock wave durmg bubble collapse and
rebound. Reprinted from (13).

than r, will cavitate. This definition is much more accu-
rate than the engineering definition, but lacks consid-
eration of any dynamic or non-spherical effects, which
can be predominant in some situations.

This new definition of cavitation inception high-
lights the fact that a correct scaling of the cavitation
phenomenon has to account not only for the conserva-
tion of the parameters shown in Equation (2), but also
for the nuclei size distribution between the model and
the full scale.

Spherical bubble dynamics

Newtonian incompressible model -
Rayleigh-Plesset equation

The most commonly used bubble dynamics model is
based on the assumption of a spherical bubble in an
.ompressible liquid. In this case, the radial velocity of

e liquid, u,, at a distance, 7, from the bubble center, is

directly related to the bubble wall velocity through the
continuity, or mass conservation equation:

R(t)]z, ©

ur = R(t) [_r

where R(t) is the bubble radius at time t, and R(t) is the
bubble wall velocity. This equation accounts for the
kinematic condition at the bubble wall - i.e. the veloci-
ty of the bubble wall is identical to the liquid velocity at
this wall. This obviously neglects any flow (mass trans-
fer) across the bubble interface. A second boundary
condition at the bubble wall, which is dynamic,
expresses the balance of the normal stresses at the wall.
For a Newtonian fluid it can be written:

PR ean X op 2 (10)

VP R=N TR

where P, (R) is the pressure in the liquid at the bubble
wall, P, the pressure inside the bubble, y the surface ten-
sion, and y the kinematic viscosity. As above, the bub-
ble contains vapor of the liquid at the constant partial
pressure, p,, and non-condensable gas at the partial
pressure, Ps which is related to the reference value P
through:

® %)
P,=P, (';) , amn
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Figure 4: Gas pressure inside the bubble as a function of time

for a bubble subjected to a sudden pressure drop. Comparison

between an incompressible medium case (c=linfinityl) and a
compressible medium.

where the constant k is between 1.0 (isothermal) and
¢,/c, (adiabatic), and V, and V are the reference and
mstantaneous values of the bubble volume respectively.

The pressure balance at the bubble interface then
becomes:

* 2 R
P(M)=P,+P, ( 0) -—7-4;1}-(; 12)

A number of effects such as gas diffusion or heat trans-
fer have been neglected in the above equation, and are
usually unimportant in the case of a growing and col-
lapsing bubble in a cold liquid. For an oscillating bub-
ble, however, rectified diffusion can be very important.

If we replace Equation (9) in the liquid momentum
equation, integrate that equation between the radius of
the bubble and infinity where the imposed pressure is
P_(t), and account for Equation (11), we obtain the well
known Rayleigh-Plesset (RP) Equation (2,9) where dots
denote time derivatives:

( : ) +P-P ) - .

R
(13)
This differential equation describes the bubble radius
versus time when the time variations of P_ are known.
Integration of this equation enables one to obtain con-
ditions for bubble oscillations, or rapid bubble growth

and collapse. In addition, this equation provides the
necessary input to compute the pressure generated

p[RR+ R2]+4u
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Figure 5: Numerical simulation of bubble collapse near a solid
wall using 2DynaF$S. Bubble contours at various times during
collapse.

during bubble collapse. These pressures can be very
large. They decrease with an increase in the amount of
initial gas in the bubble. They will be considered as ref-
erence values in comparison with other models in the
following sections.

Viscoelastic liquid: modified RP equation

When the liquid in which cavitation occurs does not
have Newtonian properties, the above RP dynamics
equation must be modified to account for a non-lincar
stress-strain relationship. This is the case for inslance in
blood flow, or in hydrodynamics when polymer addi-
tives are used to reduce drag. The question is then to
evaluate to what extent accounting for the fluid’s non-
Newtonian behavior is important from the cavitation
view point. In previous studies (10-12), we considered
theoretically (10), and experimentally the behavior of
spherical and non-spherical (11,12) bubbles in a vis-
coelastic fluid medium. The equation of state of the
fluid was taken to be a general 3-parameter Oldroyd
model such that the stress-strain relationship (c and e
are the stress and strain tensors) is given by:

ol de P
I3 0O D i
O +T, s 2u (( i+ 9&' it ) (14)

where T, M and pt are characteristic relaxation times
and the dynamic viscosity of the non-Newtonian fluid.
For a spherical bubble this fluid behavior shows up in
both the momentum equation:
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Figure 6: High speed photographs of bubble collapse near a
solid wall using a spark-generated bubble.

du  du g 9o, 30,0
P + U =- + + , (15)
or or or r

where the last two terms have replaced the more con-
ventional viscous terms, and in the stress balance equa-

tion at the bubble interface, which becomes:

R 3 2Y

P (M)="D, ( R”) +P,- R o, b. (16)
Finally, for an incompressible isolated bubble the

differential equation describing the bubble radius ver-
sus time becomes:

Ik

3. R, 2y
p[RR+ R2]=PQ,( ) +P,- " -P_()
? AR R

o

_ t
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Figure 2 shows a comparison between the oscillation
and collapse of a spherical bubble in a viscoelastic lig-
uid and water. Negligible effects are seen for a strong
bubble collapse unless for very large unrealistic values
of A; =1 p0‘2/64u and A, = tngpoz/64u Viscoelastic
effectq a ppear less neghglble for weaker bubble oscilla-
tions, and when several bubble periods are considered
(10). Experimental results relative to the viscoelastic
effects are presented below.

Influence of liquid compressibility

Even though generally neglected in bubble dynam-
ics studies, compressibility of the liquid medium can
become important when the speed of the bubble wall
during collapse or rebound approaches the sound
speed in the liquid. This is illustrated in Figure 3, where
shock waves are emitted at bubble collapse (13). In
order to model the liquid compressibility, an equation
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Figure 7: Motion of the re-entering jet point in the presence of
a moving and rigid solid wall. Influence of the addition of a
polymier solution. Reprinted from (12).

of state of the liquid is introduced. For instance, for
water the following Tait equation (6-8) is used:

B n

in which B and n are constants depending upon the lig-
uid, with values of 3000 atmospheres and 7.25, respec-
tively, for water. The model that has been shown to be
the most precise, was proposed by Gilmore (15), and is
based on the Kirkwood-Bethe (16) hypothesis. This

ypothesis states that the disturbance of any fluid

roperty propagates along an outgoing characteristic
of velocity of propagation of u + ¢, the sum of the local
velocity of the fluid and the sound speed. In this case
the equation of motion of the bubble wall can be writ-
ten:

Ry Rdil( R
=H(1+ )+ (l-— ) (19)

c c dt ¢
where c is the sound speed at the bubble wall. H is the
difference between the enthalpy at the bubble wall and

at infinity, and with an isentropic liquid compression
assumption is defined as:

P L |
H(p) = M=I . 20)
o e P

The pressure in the liquid is then given by the fol-
lowing equation at a given location r:

=000 [(-5) (5 55)

n/(n~1)
+ 1] -B. 21
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Figure 8: High speed photography observation of bubble
dynamics between two solid walls.

The velocity of the fluid along the characteristic surface
is given by:

du 1 y c2u
= [((’ + 11} -2 ], (22}
dt c-u r2 r

with iy = (i - 1*/2)/r. Using as the initial condition the
velocity and radius of the bubble wall, the above equa-
tion can be used to compute the velocity along the char-
acteristic. Equation (20) then gives the corresponding
pressures.

The former expressions reduce to the incompressible
ones as the quantity R/c drops below 0.2. In general a
slightly compressible model can be used to replace the
Rayleigh-Plesset equation with the Keller-Herring
cquation (8):

-2 e

1/ R Rd
=—(1+—+E';i—)[PL_pm]' (23)

where:
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Figure 9: Numerical sumulation using 3DynaFS5 of bubble
dynamics between beo solid walls.
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Figure 4 compares the pressures in the bubble when
compressibility is taken into account and when it is not
for a particular case of a spherical bubble collapse. Both
an increase in the bubble period and a decrease in the
maximum bubble pressure can be observed when a
finite sound speed in the water is considered.

Non-spherical bubble dynamics

Introduction

In most practical applications where cavitation occurs,
bubbles are seldom isolated or spherical. This is the case,
for instance, in biological applications when blood flows in
and out of the heart through a heart valve. During closure
of the valve, flow separation and increased velocitics can
induce bubble nuclei explosive growth followed in the
higher pressure regions Ly bubble collapse. Fortunately,
with the recent advent of modern computational, experi-
mental, and analytical techniques, the often-neglected
bubble flow and bubble boundary interaction and defor-
mation effects can be addressed. To do so, we developea a
numerical method which accounts for strong bubble/bub-
ble and bubble/flow interactions. This method has been
used to date to study interaction between bubbles, bubbles
and nearby rigid or deformable/movable toundaries, and
bubble behavior in non-uniform flows when the underly-
ing flow is viscous. Two particular shear flow cases of rel-
evance to cavitation in separated flows are briefly consid-
ered here; a boundary layer flow near a flat wall and the
flow field of a line vortex.

Shear and boundary interactions are probably
important for flow around heart valves. In both cases
significant modifications of the bubble dynamics are
associated with the presence of the shear and its com-
bined effects with nearby boundaries.
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Figure 10: Motion of the re-entering jet point in the presence
of two solid walls or free surface. Influence of the addition of a
polymer solution. Reprinted from (12).

Bubble dynamics model:
numerical boundary element method

For cavitation bubbles, large but subsonic bubble
wall velocities are involved and, as a result, viscous
and compressible effects in the liquid can be neglected.
This results in a flow due to bubble dynamics that is
potential (velocity potential, ¢,), and which satisfies the
Laplace equation:

Boundary conditions are such that at all moving or
fixed surfaces in the flow field an identity between
fluid velocities normal to the boundary and the normal
velocity of the boundary itself is to be satisfied. The
bubble is assumed to contain non-condensable gas as
well as vapor of the surrounding liquid, as above.

The three-dimensional Boundary Element Method
developed (3DynaFS, with an axisymmetric version
2DynaFS$ (17-19)) uses Green'’s equation to determine a
solution to the Laplace equation. If the velocity poten-
tial, ¢,, and its normal derivatives are known on the
fluid boundaries (points M), and ¢, satisfies the
Laplace equation, then ¢, can be determined at any
point P in the fluid domain using;:

J LI o b 930 ()] 45 = oo

(26)

an = Q is the solid angle under which P sees the fluid.
The advantage of this integral representation is that it
effectively reduces by one the dimension of the prob-
lem. If P is selected to be on the boundary of the fluid
domain, then a closed system of equations is obtained
and used at each time step to solve for values of 8¢,/n
(or ¢), assuming that all values of ¢, (or 5¢,/n) are
known at the preceding time step.

To solve Equation (26) numerically, the initially
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Figure 11: Influence of the presence of a linear shear velocity

on the collapse of a bubble near a solid wall. V ., is normal-

ized with the Rayleigh velocity VAP /p.

spherical bubble is discretized into a geodesic shape
with flat, triangular panels. To evaluate the integrals in
Equation (26) over any particular panel, linear varia-
tions of the potential and its normal derivative over the
panel are assumed.

With the problem initialized and the velocity poten-
tial known over the surface of the bubble, an updated
value of 8¢,/ 81 can be obtained by performing the inte-
grations expressed above and solving the correspond-
ing matrix equation. The unsteady Bernoulli equation
can then be used to solve for D¢,/ Dt, the total material
trivative of 8, while following a particular node dur-

g its motion. Using an appropriate time step, all val-
ues of ¢, on the bubble surface and all node positions
can be updated. This time-stepping procedure is
repeated throughout the bubble oscillation period,
resulting in a shape history of the bubbles. The details
of the numerics are described in a report by Chahine et
al. 17).

Presence of a basic flow

To study bubble dynamics in a non-uniform flow
field, the following model was used. Denoting the
velocity of the non-uniform “basic flow” as V, and the
resulting velocity field in the presence of oscillating
bubbles as V,, we defined the “bubble flow” velocity
and pressure variables, V, and P, as:

By noticing that, for cavitating flows, this “bubble
flow” field can be considered to be a potential maded,
we were able to use a method similar to the one
described in the previous section to study the dynam-
ics. We then obtained the following modified Bernoul-
li equation (18,19,23):

8¢b 1 ph
V[ 5 + ) IVI12+4V, .V, + p]:V,,X(VXVu)-

(28)
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Figure 12: Comparison of the pressures at the cloud center pre-
dicted by 3DynaF$ and the asymptotic analysis code. € =
Rpax/1g = 0.047. Pressures are normalized by maximum value
for isolated bubble. Reprinted from (24).

For cavitation in a line vortex, Equation (28) becomes
(18).

5, 1
Sy v 12,
& 2 ¢t

= constant along a radial direction. (29)

In the case of a flat wall boundary layer flow such
that all velocity vectors are parallel to the wall (unit
direction, e,), and depend only on the distance, z, to the
wall, V, = f(z).e,, Equation (28) becomes (19):

ol

1 P,
+—— IV, 124V . Vb+—
8t p

= constant along the y direction. (30)

These two expressions were used in conjunction with
the numerical model described above to conduct the
simulations shown below.

Interaction with a nearby deformable structure

To study bubble interaction with deformable struc-
tures, the above described BEM codes were coupled to
existing solid mechanics/structural dynamics codes,
Nike3D and Nike2D, developed by Lawrence Liver-
more National Laboratories. These codes have the abil-
ity to include complex material and structure proper-
tics. The coupling between the two sets of codes is
achieved through the dynamic condition at the bound-
aries of the deformable boundary. At these boundaries,
the pressure from the liquid obtained through solution
of the BEM liquid problem is used as the input or dri-
ving force for the structural model. The resulting
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Figure 13: Growth and collapse of five bubbles having the same

inilial size and internal pressure. Influence of the initial bubble

geometry distribution on dynamics. € = 0.474, Pgo/ P,b=
283. Reprinted from (23).

motion of the structure is then fed back into the BEM
code to calculate the fluid motion at each time step, as
described above. The velocity and position of each
node are transferred to the fluid model. This coupling
results in a fully interactive calculation (26).

Illustrative numerical results and experimental
observations: spark-generated bubbles

In all the experiments reported here vapor bubbles
(with some non-condensable gas) were generated in
water by discharging a capacitor across a pair of plat-
inum or tungsten electrodes for a very brief period of
time. The generators used were capable of capacitor
charge up to 10 kV. Such a system has been widely
used by various authors for bubble dynamics studies,
and the validity of the analogy between the collapse of
the bubbles it produces and cavitation bubbles has
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Figure 14: Simulation of the dynamic interactions between a
cloud of 21 bubbles using 3DynaF$S on a Cray. Two planes of

symmetry are used; each bubble has 102 nodes and 200 panels.
' a) Growth. b) Collapse.

been established (7). The electrodes were mounted in a
large vessel which was hermetically sealed and con-
nected to a vacuum pump. Lowering the ambient pres-
sure was used for degasing and, when desired, for
increasing the bubble size, thus slowing down the phe-
nomena observed. This enabled the use of a moderate
framing rate high-speed camera, a HYCAM, whose
maximum capability was 10,000 frames per second.

Behavior near a solid wall
The physical mechanisms by which bubble collapse
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Figure 15: Bubble dynamics on the axis of a vortex line. Left
side shows 3-D shapes at selected times, right side shows bub-
ble contours at increasing times. a) Initial elongation ratio of
3, p;/ p.. ) No swirl, ii) 0= 056, R /R, = 3.b) I" = 0.005
m?/s,R,=100pum. ) p,/p.=2,R./R,=1,iD) p/p.=1,

’ R./R,=1,iil) p;/p_=2, R /R, = 0.57. Reprinted from (25).
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near a solid wall causes material erosion have been
the subject of controversy for a long time. Indeed, a
shock wave can be generated at bubble collapse (Fig.
2). In addition, bubble collapse near a solid surface
proceeds with the formation of a damaging microjet.
During its implosion the bubble first elongates per-
pendicular to the wall, then the side away from it flat-
tens and a re-entering region is formed initiating a
microjet which can pierce the bubble and hit the wall.
Figure 5 shows a numerical simulation of this collapse
using 2DynaFS. Very beautiful pictures of the phe-
nomenon were taken by Lauterborn (20) who gener-
ated the bubbles using a laser. Figure 6 presents some
of our high speed photographs using the spark gener-
ated bubbles (21).

Influence of fluid properties on the bubble behavior
Drag-reducing polymers are known to greatly
reduce the cavitation inception index for several types
of flows. The onset of cavitation is also delayed in
coustic cavitation in a siagnant fluid (16). In addition,
cavitation erosion has been reported to be greatly mod-
ified (in both directions) with additives. Experimental

(1) and theoretical (2,21) studies on a spherical bubble
growth and collapse have shown no sigrificant differ-
ences between a Newtonian and a viscoelastic fluid.
This conclusion was supported by our high-speed pho-
tographic observations of spark-generated bubbles in
an unbounded fluid (4).

However, these observations showed that a Polyox
WSR 301 solution has a noticeable influence on non-
spherical bubble dynamics near solid walls, compared
to a liquid having the same viscosity (water + glycerin).
The effect of the presence of the additives is to bring the
bubble behavior closer to that of a spherical cavity. In
order to compare bubble behavior in water and in a vis-
coclastic liquid, diluted polymer solutions of Polyox
were used in the set up described above. In «he first
series of tests (11), a cylindrical aluminium specimen,
used to record the damage due to the implosion, was
fitted under the electrodes in a hole drilled in a Plexi-
glas plate. It was observed later, while analyzing the
motion pictures, that this specimen, not being tight
enough in the hole, was being slightly sucked up
towards the bubble during its growth and then
returned after the implosion.
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Figure 16: Comparison of calculated bubble collapse contours
using 2DynaF$S and Nike2D. Top to bottom: fixed, rigidly
moving, and deforming structure. Reprinted from (26).

This was in fact fortunate since it allowed the study
of the influence of wall motion on the bubble dynam-
ics. In that case the curves R, /R, .. = f( H 7o) (see Fig-
ure 7 also for definitions), where 1, is the period of
oscillation of the spherical bubble obtained in the same
conditions show that the period of oscillation of the
bubble decreases when € = R, ../l increases. This
behavior, comparable to that near a free surface, is the
opposite of what happens near a fixed solid wall.

The experiment was then repeated with a fixed wall.
The lengthening effect on the bubble life was verified
and increased with € (Fig. 7). In both cases described
above, the bubble was violently attracted towards the
wall during its successive collapses and rebounds.

In the presence of polymer additives the following
observations were made. In the vicinity of the moving
solid wall, for the same ¢, the addition of a 250 ppm of
Polyox delayed the creation of the microjet thus
increasing the bubble lifetime and moving the curves

R, = f(t) toward the spherical case curve. Near a fixed
solid wall the apparently opposite effect (shortening of
the period of oscillation) in the presence of polymers
was also seen to reduce the differences between the
considered case (given €) and the spherical case (11,12).
This seems to indicate a stabilizing effect on bubble
departure from sphericity due to the presence of the
viscoelastic fluid. However, as shown in Figure 10, the
opposite effect was observed in the presence of a free
surface (12).

) Heart Valve Dis
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Figure 17: Collapse of spark-generated bubbles below a plate.
a) Rigid 0.475 in. Plexiglas plate. b) Flexible 0.125 in. nylon
plate.

Behavior between two solid walls

The collapse of bubbles between two solid walls is
interesting from the practical view point of cavitation
in confined areas. The large deformations involved are
also of interest from the fundamental dynamics point
of view. When € < 1, a bubble at equal distance from the
walls first elongates parallel to the walls (direction of
most freedom) during its growth, then perpendicular-
ly when the implosion starts. Later the bubble con-
stricts in the medium plane of symmetry and splits in
two parts. This is observed experimentally in Figure 8
and simulated numerically in Figure 9 using the code
3DynaFS. Later on each of the two bubbles formed col-
lapses with the formation of a microjet directed to the
closer wall. When € 2> 1, the bubbie behaves as a cylin-
drical cavity until the final stages of collapse where it
constricts and splits in two parts (7,9).

Quantitatively the presence of the two walls aug-
ments the bubble lifetime significantly. This lengthen-
ing effect increases dramatically with € (Figure 10).
When € is approximately equal to 0.7 the period
increases by 50% (compared to only 7% in the presence
of a single wall) and when € is approximately equal to
2 it is doubled.

In the presence of polymer additives a shortening of
the period of oscillation tends, as for the single wall, to
reduce the differences between the considered case and
the spherical case.

Bubble collapse near a flat wall in a shear flow
While most numerical simulations and experimental
observations of fundamental bubble dynamics have
been made in a quiescent liquid near an infinite wall, it
is obvious that cavitating bubbles most often occur ina
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Figure 18: Simulation of the growth and collapse of a bubble
near a glcbule. Bubble and globule shapes versus time. Indices
1 and 2 are for bubble and globule respectively.a) R ., =
Rpax2e 6, =6, =0.77 Njm, k, = 1.25,k, =10.b) R, ; =
R .0 Oy =077 N/m, 0, = 104 N/m, k, = 1.25, k, = 10. ¢)
Roaa =2R .0 0, =0, =0.77 N2 /s, k, = 1.25,k, = 10.

flow with a slip velocity between the bubble and the
liquid. These effects can be simulated numerically
using 3DynaFS. Figure 11 illustrates the results of bub-
ble behavior near a flat plate in the presence of a shear
flow. The shear flow is such that V= 0 at the wall and
grows linearly away from it to attain V. at the loca-
tion of the bubble center. The figure shows interesting
results for bubble behavior during bubble growth and
collapse.

For an increasing ratio, 1=V, / \/AP between the
shear flow velocity and the charactenshc bubble col-
lapse velocity, the bubble deforms and elongates more
and more during its growth. For small values of 1, the
re-entering jet is deviated from the perpendicular to the
plate with increasing values of 1. For larger values of t,
the re-entering jet formation is totally modified and the
bubble tends to cut itself into a toroidal bubble. With
increasing values of 1, an interesting lifting effect is
observed, and the bubble centroid is seen to move fur-
ther and further away from the wall. This results from
an interaction between the shear flow and the rotation
imparted to the bubble.

Interaction between multiple bubbles

In a cavitating flow field bubbles are seldom isolated,
so there is a need for simulation tools for multibubble
interactions. The first model we developed was based
on matched asymptotic expansions (22). This model
explained the fact that collective bubble dynamics can
generate pressures much higher than expected from the
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simple addition of single bubble effects. This explains
the very high erosion rates observed when cloud cavi-
tation occurs. However, this model diverged when the
number of bubbles increased or when the bubble spac-
ing decreased. Using the BEM method, these limitations
can be removed and more realistic and accurate results
obtained. Figure 12 compares the results obtained with
3DynaFS with those using an asymptotic approach
(22,24). Note that the asymptotic approach is already an
improvement over most previous studies, which totally
neglected the interactions. The bubble cloud is subject-
ed to a sudden pressure drop, and cloud configurations
of 1,2, 4 and 8 bubbles are considered.

For the 2-bubble case the bubble centers are separat-
ed by a distance /), and the initial gas pressure in each
bubble is such that the bubble would achieve a maxi-
mum radius R, .. = Ry, = 0.047], if isolated. The four-
bubble configuration considers similar bubbles cen-
tered on the corners of a square with sides of
dimension /;. Finally, the eight bubbles are located on
the corners of a cube of side /. The figure presents the
variations with time of the pressure measured at the
“cloud center” normalized by that obtained with an
isolated bubble. As expected, the asymptotic approach
gives a very good approximation for a small number of
bubbles, N. However, the pressures predicted by the
asymptotic analysis are seen to become much higher
than the more accurate 3D results for an increasing
value of N. Similar results are observed when the cloud
void fraction or the ratio, en =r, /1 , increases (24). This
result qualifies earlier conclusions about extremely
large pressures generated by a bubble cloud collapse.

Figure 13 illustrates another important effect due to
asymmetries in a bubble cloud configuration. It consid-
ers an asymmetric five bubble configuration. All bub-
bles have the same initial radius and internal pressure,
and are initially spherical and located in the same
plane. The most visible effect is that observed on the
center bubble; its growth is initially similar to that of
the other bubbles, but it ends up being the least
deformed. Later on, as the collapse proceeds with the
development of a re-entrant jet directed towards the
central bubble, this bubble appears to be shielded by
the rest of the cloud. Its period is at least double that of
the other bubbles. Very similar effects are seen when
the number of bubbles is increased. Figure 14 shows a
21-bubble configuration, where again growth occurs
without too much interference between the bubbles.
However, collapse proceeds from the outer bubble
shells towards the inside, indicating a cloud period of
oscillation much larger than that of individual bubbles,
as predicted by cloud cavitation models (8).

Bubble dynamics on the axis of a vortex
Let us now consider the case where the bubble is
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placed at the axis of a vortex line at t = 0 and starts to
grow due to the excess between the internal pressure
and the local ambient pressure. During the growth
phase the bubble elongates along the vortex axis, then
starts its collapse from a significantly elongated shape
(25). As shown in Figure 15a, this elongation is not the
key parameter to the subsequent bubble behavior. If the
rotation velocity is neglected, the collapse would pro-
ceed as for elongated bubbles with two opposing jets
formed at the bubble points along the axis (Fig. 14).
However, the opposite effect with a radial jet forming is
in general obtained when the rotation in the vortex flow
is included. The bottom of Figure 14a illustrates this for
particular values of the vortex circulation, T, and the
normalized viscous core radius, R.=R./R .

In Figure 15b, the initial pressures inside the bubbles
are taken to be larger than the pressure on the vortex
axis, and the bubbles are left free to adapt to this pres-
sure difference. For a given value of the circulation
(normalized parameter, [equ 30]), the bubble behavior
strongly depends on the ratio of the core radius R, to
Rpyax- In all cases where R is larger than R, it
appears that the bubble tends to adapt to the vortex
tube of radius R. This could lead to various bubble
shapes, as shown in Figure 15b, ending up with a very
elongated bubble with a wavy surface for large values
of R ../R.. The figure shows bubble contours at vari-
ous times during growth and collapse for various val-
ues of the core radius, R, and the ratio of the initial
bubble and ambient pressures. Also shown are selected
3D shapes of the bubbles at various times which have
the advantage of being much more descriptive.

It is apparent from these figures that during the ini-
tial phase of bubble growth, radial velocities are large
enough to overcome centrifugal forces and the bubble
first grows almost spherically. Later on, the bubble
shape starts to depart from the spherical and adapts to
the pressure field. The bubble then elongates along the
axis of rotation. Once the bubble has exceeded its equi-
librium volume, bubble surface portions away from the
axis - high pressure areas - start to collapse, or to return
rapidly towards the vortex axis.

On the other hand, peints near the vortex axis do not
experience rising pressuies during their motion, and
are not forced back toward- their initial position, thus
continuing to elongate alor, . *he axis. As a result, a con-
striction appears in the mid-section of the bubble. The
bubble can then separate into two or more tear-shaped
bubbles. It is conjectured that this splitting of the bub-
bles is a main contributor to cavitation inception noise
which can be used as a means of detecting cavitation.

Bubble collapse near deformable bodies
This section illustrates the importance of accounting
for the motion and deformation of a nearby body in the
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study of bubble dynamics. This has been illustrated
indirectly in the above experiments, where the motion
of an impacted sample significantly modified the histo-
ry of the jet point. Figure 16 shows the behavior of a
large bubble near a spherical structure. Three charac-
teristic interaction cases are considered (26). In the first
case the sphere is rigid and does not move or deform.
In that case, as for a bubble collapsing near an infinite
wall, the bubble collapse proceeds with the formation
of a re-entering jet perpendicular to the sphere. In the
second case, the sphere is allowed to move rigidly in
response to the bubble pressure field. A very signifi-
cant modification of the bubble behavior is observed,
leading to a constriction of the bubble top prior to the
formation of the re-entering jet. Finally, in the third
case, a full coupling between the structure motion and
deformation and the bubble behavior is considered
using the coupled 2DynaFS and Nike2D codes. In that
case, a bubble behavior between the above two cases is
observed. A re-entering jet is still formed, but it is
wider and slower than that achieved in the presence of
a rigid sphere. However, the pressure felt by the
deforming structure is larger (26).

Figures 17a and 17b compare the experimental obser-
vations of large spark-generated bubble behavior neara
solid and a flexible plate. In both cases, a relatively large
bubble is generated through a reduced ambient pres-
sure in the bubble chamber, and the bubbles are spark-
generated below horizontal plates. In Figure 17a, the
plate is made of thick Plexiglas (0.475 inch), while in
Figure 17b, the plate is made of thin (0.125 in) pliable
plastic. The bubbles are generated under identical con-
ditions and would have the same radius if in an infinite
medium. The difference in the behavior of the two bub-
bles is, however, very obvious. Two important charac-
teristics of the rigid wall case are the formation of a bub-
ble re-entering jet directly towards the plate, and the
reflection of an expansion wave at the plate wall which
creates a secondary bubble from minute air bubbles
trapped under the plate (Fig. 17a).

In the flexible wall case shown in Figure 17b, the re-
entering jet is practically eliminated, and the bubble
collapses almost spherically without moving towards
the plate. Due to some asymmetry in the plate position
relative to the bubble, a small motion sideways and
away from the plate is observed. The formation and
growth of a bubble layer near the solid plate is replaced
in the flexible plate case with a very fine sheet of tiny
bubbles which move away from the plate. This again
illustrates the importance of nearby wall motion and
deformation on bubble dynamics.

Bubble collapse near simulated cells
The last example presented in this communication
concerns the behavior of a bubble near simulated blood
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cells. Undesirable effects of cavitation using ultrasound
have been reported in the literature (8). The negative
effects of cavitating bubbles on nearby cells are
explained by the impact of re-entering jets on the cells
and by the generation of large stresses on the cell. With-
out trying to simulate accurately the cell globule, we
have considered the interaction of a growing and col-
lapsing bubble and a nearby spherical globule with a
very high surface tension and/or a very low compress-
ibility content. The bubble behavior near such a simu-
lated cell is seen to depend on the size ratio between the
bubble and the globule.

In most cases, as in Figures 18a and b, the cell acts as
a nearby free surface and tends to repel the re-entering
jet formed during the bubble collapse. This jet moves
away from the globule. However, it appears that the
globule is seen subjected to very high stresses leading
to a sharp intrusion of the fluid in the globule and a
potential rupture of the globule interface. Figure 18¢c
shows a second configuration where the globule is
much larger than the bubble, in which case the globule
is stretched in a different fashion.

Conclusions

We have reviewed various aspects of cavitation incep-
tion and highlighted the potential for error in scaling if
the proper definition is not used. For instance, the con-
cept of nuclei distribution in the cavitating medium,
often not addressed, can be a source of serious scaling
problems. A few models for bubble growth and col-
lapse were then presented, including the effects of a
non-Newtonian fluid which are of relevance to biolog-
ical applications. The importance of non-spherical bub-
ble dynamics was then addressed as this is very com-
mon in any conditions where cavitation erosion occurs.
The influence of relative liquid bubble flow, mutltibub-
ble interactions and the presence of non-uniform flow
fields were then briefly considered. Finally, the impor-
tance of the inclusion of the motion and deformation of
the nearby boundaries or cells was highlighted.

While this communication addressed a host of prob-
lems, showing some particular solutions, it was not
able to give definite general conclusions. It did, how-
ever, highlight the fact that the study of cavitation is
much more complex than usually thought. Simplified,
commonly used models (spherical and axisymmetric)
can lead to simplified answers. However, these results
are only good in very limited conditions, and risk
results that can be in error by orders of magnitudes.
Fortunately, with recent advances in computational
techniques and computers, detailed simulations of par-
ticular conditions are becoming mcr.: and more within
reach.
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Discussion h

Swanson:

This photography is to be commended. One of the
things that I would like to point out specifically is that
in the very last series there were a number of rebounds
for those bubbles. As the bubbles collapse, the generat-
ed jet does all those damages. These are the prettiest
pictures [ have seen in a long time.

j Heart Valve Dis
Vol. 3. Suppl. 1
Chahine:
Thank you.
Israelachvili:

How do you know that the damage is not caused by
the spark? I would like to show some pictures given to
me by Professor Ellis before he died. These pictures
show that the shock waves at the inception are as
strong as they are when they collapse.

Chahine:

The subject of what generates the erosion, the shock
or the re-entering jet, is very old as we saw from Pro-
fessor Ellis’ picture. I think that it is a combination of
both effects and depending upon the bubble distance
from the wall and what configuration is used it is one
rather than the other. For example, in an underwater
explosion it would be much more the shock. However,
we have been working on instances where it is the jet
that is much more erosive than the shock.

Regnaulit:

Maybe you can clear up a few concerns or questions
I have about cavitation. You defined cavitation as the
expansion of nuclei bubbles and the recollapse of those
as opposed to the generation of vapor without a nuclei.
Is that correct?

Chahine:

I have no doubt in my mind that it is practically
impossible to generate vapor out of no nuclei. I think
maybe 95% of the cavitation community would agree.

Regnault:

In the case of cavitation in the body where we would
have a large amount of dissolved gases, would you say
that the drawing out of dissolved gases from the blood-
stream then the recollapse of these bubbles would be
the source for cavitation bubbles?

Chahine:

No, I think there is a confusion between dissolved
gases and gases that are in suspension as nuclei. In the
first set, the molecules of the gas are mixed with the
molecules of the water. The characteristic time for these
dissolved gases to go into the nuclei is very long. That
is not what I am talking about. I am talking about actu-
al microscopic bubbles that are already present in the
liquid, very different from the dissolved gases in the
bloodstream.
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Statement of work:

Theory: The theoretical part aims at showing the effects of the interaction on
bubble behaviour and on the vortex flow behaviour.

A first approach examine the 2D axisymmetric interaction, considering that
the fluid is perfect.

In a more general chapter, we take a fully viscous interaction into account.

Results: Two vortex models lead to realistic evolutions of the bubble and of
the vortex flow, with the influence of an axial velocity.

A 1D model shows, for the first time, that the interaction seems to be non
linear.

Synthesis and conclusion: We propose a matching of the two solutions for an
axisymmetric and finite bubble, which would lead to understand the non linear viscous
interaction, taking the axial flow of the vortex into account.
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NOMENCLATURE

bubble radius.
initial bubble radius.
Rankine’s core radius.
Burgers constant.
local curvature on the bubble surface.
Lagrangian or material derivative.
time step.
gravity field.
number of the time step.
polytropic constant for PV* =constant.
pressure field.
P,, initial partial gas pressure in the bubble.
P, pressure in the liquid.
P, pressure at O, the stagnation point of the initial Burgers vortex.
P, partial vapor pressure.
P, pressure at infinity.
Re Reynolds number
s variable: s=r/a.
T stress tensor.
t time.
U  velocity field: U = U. e +Usee+ U, ¢,
V  bubble volume.
V, initial bubble volume.
We Weber number
Burgers core radius.
initial Burgers core radius.
circulation of the fluid.
dynamic viscosity coefficient.
cinematic viscosity coefficient.
velocity potential.
fluid density.
surface tension.
vorticity.
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INTRODUCTION

The presence and dynamics of bubbles in a flow field can have significant
effects of relevance to engineering applications of great importance. These ef-
fects include erosion, noise generation, damping of acoustic signals, degradation
of performances. This has instigated a great interest in the study of the problem,
especially in high vorticity regions. These regions can be found at the tip of pro-
pellers’ blades or in swirl chambers for example. The presence of cavities in such a
tip vortex can have significant effects on the behavior of the flow and on its char-
acteristics, in relation to transportation and exchanges of energy. These effects
cannot be understood without adressing complicated, but nonetheless fundamen-
tal phenomena associated with the interactions and the motion of the bubble. The
complexity of the general physical and mathematical problem can be approached
by making assumptions, which simplify the problem. Then, once the problem has
been posed, we solve it by using computational methods. In the first approach,
we consider a bubble in a vortex, taking an axial velocity into account, where the
vorticity is due to the initial flow. Thus the interaction is linearized, considering
the addition of the flow generated by the bubble with the initial “basic flow”. In
a parallel approach, a fully viscous interaction between the bubble and the flow
is considered. The viscous solver is one-dimensional as we look at an infinitely
long cavity such as one can find on the axis of a tip-vortex behind a propelier.
In the third part we try to propose a solution to the matching of the two meth-
ods, so that the interaction between the vortex flow and the bubble may be fully
understood.




1. Generalities.

1.1. Cavitation.Bubble dynamics.

The variations of the pressure field in a fluid containing nuclei (cavitation germs)
may produce large cavities of gas and liquid vapor, in other words bubbles.

The dynamics of these bubbles in respect to the flow around them is a complex
problem which has been solved in different cases.

The cavity, submitted to forcer - .y also be deformed, rebound or collapse;
in accordance to the ambiant med. ...

1.2. Vorticity. Vortex models

The whole of this study is axisymmetric. Figure | shows the referential we are
using.

A newtonian fluid in motion can rotate about itself. To measure this effect,
we use a vector quantity named vorticity: defined by

w=VxU,

which pbysically coresponds to the angular velocity of two line segments ir. the
fluid mutually normal to n. (See figure2)

Figure (2) is an intuitive illustration of vorticity. The cross represents two lines
of fluid particles. At time step one the cross has right angles. It is then convected
in the fluid. At time step two the cross has changed it angles. We have observed
the rate of change of the angle between these two segments. This angular velocity
corresponds to vorticity.

1.2.1. The vorticity equation.

The momentum equation, written in an inertial frame of reference is:

DU 8U vP VT
ﬁ-w+(U.VU)--—p-+—P-+s— (1.1)
4




Replacing (U.V)U by V((U.U)/2)-Uxw,
and taking the curl of equation (3.25) leads to:

1
7

If we consider the flow of a Newtonian fluid of constant density and

viscosity, with only potential body forces, the vorticity equation becomes
—Db? =w(VU) +vVi . (1.2)

This equation has the form of a convection-diffusion equation, like a thermal
diffusion equation, and characterizes the diffusion of vorticity due to the
action of viscosity.

A fluid vortex is a region of concentrated vorticity and a vortex line is a line
everywhere tangeant to the local vorticity vector.

Different models of vortex flows have been given through the years. We will
describe two of them here.

% = -w(VU)+(Vw)U + VprP—%Vpx (VT)+%VX (VT)+ng .

1.2.2. Rankine vortex.

This is probably one of the most basic axisymmetric vortex flows. It consists in a
rotating core of very viscous fluid and an outer region where the fluid is assumed
to be perfect .

Mathematically, the expression of the velocity components amounts to:
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1.2.3. Burgers vortex.

BURGERS (1948) solved equation (3.26), demonstrating the vorticity enhance-
ment by stretching. A vortex in an incompressible, Newtonian, body force free
fluid must satisfy the vorticity equation.

If the vortex is axisymmetric, aligned with the z-direction, and placed in a
uniaxial straining field along its length, then U, = 2Cz , where C is the Burgers

constant.
The continuity equation dictates the presence of a radial influx of fluid:

Uf = —C"
and equation (3.26) has the following solution:

U, =2Cz,

Ur = —Cr,

U= gz [1 - o0 (5 )| e igure 9)
and w, = %ezp(-;-‘;);

where =2+ (53 - é) ezp(~Ct).

é may be defined to be the vortex core radius at any time t, and §, the
initial vortex core radius.

Figure (4) describes the evolution of § in time versus C.

At t =0, and for C = 0, we find the formulation used by some researchers:

U3=Ur=o,

weffom(@] e

One should note however, that this particular expression (at t=0) cannot be
considered to hold at all times since (1.3) taken to be true at all times does not
satisfy the general equation (3.25).

a8/83




1.2.4. Diffusion of vorticity in a viscous fluid.

The code described in chapter 3 (see figure (5))enables us to observe the effect
of viscosity on a Rankine vortex flow. We insert a cylinder of constant radius
in the vortex . According to the transport of momentum principle, the vorticity
spreads out and diffuses in the medium. Anpother illustration of viscosity would be
Couette’s experiment: he takes one cylinder which he inserts into a larger whollow
cylinder. He then pours fluid in between these cylinders and has the inside one
start spinning. Through viscosity the second one also starts spinning around a
little while later.

1.2.5. Viscous interaction between bubbles and flows.

The understanding of the interaction phenomena remains up to now one-sided.
The effects of the flow on the bubble has been instigated in several of studies.
Recent studies have shown that in a region of high vorticities the bubble is accel-
erated to the axis of the vortex. On its way the variations of ambient pressure
deforms it and once on the axis the bubble can split into elongated bubbles. The
effects of the bubble on the flow are yet to be fully understood. Phenomenas
related to viscosity should enable us to find leads to consistent explanations. In
the following chapters we will deal with both sides of the interaction theoretically
and numerically, restricting the study to cases where the bubble is on the axis.

2. 2D-analysis of Burgers vortex.

2.1. Vortex without bubble.
2.1.1. Discussion.

This model is only valid near the axis of the vortex, since U, and U, increase lin-
early with r and 2. Unlike Rankine’s vortex, it does not present any discontinuity,
and is physically more realistic, according to experimental studies.

o For C > 0, if §, is less than |/v/C, § will increase in time, viscous diffusion
being predominaat.

On the other hand, if §, is greater than \/v/C (the asymptotic value of §),
it will decrease in time. w,(r = 0) will then increase in time, which occurs
with vortex stretching and compression.

7




o If C <0, 8 increases whithout bound.

2.1.2. Calculation of the pressure distribution.

Replacing U, and U, in the Navier-Stokes equation by their Burgers vortex ex-
pressions leads to:

O = s+ 1)
9P _ 2
—8-; = 4PC z, (2.2)
and, because of the axisymmetry,
oP

o Equation (2.2) implies that P(r,z,t) = —2pC%z% + F(r,t).
e To solve equation (2.1), we set X = r/24, and A = (I'/2x)? p/88°.

pU} [r becomes
A A
2L 4 -t () + o (-2
So we integrate:

/exp("xz)dx - —a x-z (_xz) - %E‘(_Xz)
and
[ 2L 4« 2% exp(~2X7) - Ei(-2X?)

(integration by parts, and change of variable u = X3)
where Ei is the Exponential integral:

s [ 2L

8
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We set B = 244, and we get
P(r,z2,t) = ~2pC?87X? = 385 + F; exp(~X?) — 5§; exp(—2X?)
+B (Ei(=X?) - E{(-2X?)) + G(z,t) .

e For the boundary conditions, a TAYLOR's series expansion indicates that
the point O(r=0,2=0) is a stagnation point, where the pressure is F,.

Thus we finally have

P(r,z,t) = P, — 2pC?%z2 - 2pC?8* X? -
+5 (exp(—=X?) — § exp(~2X?) (2.4)
+B(E{-X?) ~ E{(-2X?))
where B=4L:3- andX=2—-r6 .

(see figures (6),(7),(8))

2.2. Bubble in a Burgers vortex.
2.2.1. Navier Stokes equations.

Let’s consider the case of a bubble growing and collapsing in a known flow field.
Let the is.lated Burgers vortex constitute this basic flow, U,, P,; it satisfies the

Navier Stokes equation:

a_;.:_’ +U,.VU, = -%VP, +vVU, . (2.5)

In presence of an oscillacing bubble, the resulting velocity field, given by U,
also satisfies the Navier Stokes equation:

%g +UVU= --,I;VP +vV?U. (2.6)

Both U, and U also satisfy the continuity equation:
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vUu,=V.U=0.

Since we are interested in the modification of the basic flow by the pres-
ence of the bubble, it is convenient to define the “bubble flow” velocity and
pressure variables, U, and B, as follows:

[,=U-U,, PA=P-P]

If we assume that the “bubble flow” is potential,

G=va). -

where @, is the reduced or bubble potential.
Because of continuity, ¥, satisfies Laplace’s equation:

Vo, =0.

We now substract equation (2.5) from equation (2.6), taking equation (2.7)
into account, and we obtain

v(®  Lupiuu s ﬂ] = U, x (V x U,) (2.8)
at 2 P

The assumption of potential “bubble flow” implies that, as the basic fow
interacts with the bubble dynamics, and is modified by it,

the bubble cannot generate any new vorticity. An attempt to remove
this constraint is undertaken in chapter 3.

Equation (2.8) is now to be integrated at any point within the liquid, to obtain
an equation similar to the classical unsteady Bernoulli equation.

The component of U in the ¢, direction must be zero, because the contri-
bution in this direction of the velocity field can only come from the axisymetric
basic flow; so we get

10




3 1, 00 . .. 3% A _
Bt + 2(VQ.) Cr B +2C:z B2 + > = Constant in any direction.
Very far from the bubble, the pressure tends towards the basic pressure, so
the constant is zero.
At the bubble surface: the pressure in the liquid balances with the surface
tension and the pressure in the bubble, so we know there the “bubble pressure”:

A=P-P.=Pt Pyl -c-F.,

and so
0% 1 9a,?-crd® o0, 2 PotPu($) -cr P 2.9
—a't—+-2-( 8)" ~ ro tCr5-+ 5 == (2.9)

2.2.2. Non-dimensionalization.

We normalize all variables as follow: lengths are non-dimensionalized by R,
the maximum radius the bubble would achieve if isolated in the absence of flow,
and pressures by P, the initial pressure at the stagnation point (r=0).
According to the Rayleigh-Plesset equation, the program estimates a value of
Rmax, considering the case of a single bubble in an infinite fluid.
Thus, the time scale is normalized by its characteristic time, the Rayleigh time

whose value is
TRayieigh = RmnxJ’Z .

This leads to a new non-dimensionalized form of equation (2.9) used in the
axisymmetric Fortran code:

%t;=r,+%(%)'+§(%)'-(r.+r,. (‘{;)'-w) ,  (210)

11
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where

Po=1-82 -T2+ & (exp (-Y’) - §exp (-2X7))
+B (Ei(-X") - Ei(-2X")) ,

g+ (B8 emn(-TT)

In all the following, we now consider each variable as non-dimensionalized.

2.2.3. The Bnundary Element Method.

This method was developed by DYNAFLOW in the code 2DynaFs that we had to
modify. This program considers closed surfaces such as bubbles in an infinite
domain of fluid. We had to adapt it to take a “basic flow” interacting with a
bubble into account. We now sum up the main steps tc implement the method
for an axisymmetric problem.

In order to calculate the time evolution of the bubble surface, the axisymetric
Boundary Elements Method is used, which reduces the dimension of the problem
by one. This method is based on Green’s identity, which provides ¥, anywhere
in the fluid, if this potential or its normal derivatives are known on the bubble
surface.

Implementation. Considering the fact that &, satisfies Laplace’s equation, and
defining the bubble boundary by S, we can write the following expression for the
potential at any point z in the field

(z) = / [®4(y)V,G(z,y) - G(z, )V, Bu(y)] .n,dS , (2.11)

where y is the variable of integration of the bubble surface and G is the Green’s
function for the Laplace operator, explicitly given by

1 1
G(z,y) = rrireek

As we consider an axisymmetric problem, the only function which can depend
on @ is the mathematical Green'’s function (all physical quantities are independent
of the angular coordinate). Let us define the trace of the bubble surface in a

12




meridional plan by C. We select this plan to be § = 0 in our cylindrical system
of coordinates. Let the coordinate of the point x in the plan é = 0 be (R,0, Z),
and the coordinates of the variable of integration be (r,8,z). As the normal to
the bubble surface has no components along the angular coordinate, the integral
equation (2.11) becomes:

‘1 kig
& (R2)= [ [w. (r,2) b% [ e, y)da] as- [ [ri";:‘(:—"l [” st y)da] ds
Thus the integration over the angular variable is reduced to the integral
= [3*G(r,0,2,R,2)dd .

Replacing the Green'’s function by its expression, and using the substitutions

A=(R+r)2+(Z-2)2,m—fi§,=-—°°3( 3)
we get
I= -1 K(m)
VA U
where

Sk v e rer ]

is the complete elliptic integral of the first kind.
The equation for the potential can then be cast in the form

273, (R,2) = -/c[r@.(r,z)h(r,z,R, Z]d5+/c[ 0% (r,z )g( rz ,R,Z)] ds

(2.12)
where g(r,z,7,2) = K(m)/VA , and h(r,z, R, Z) = n,89/0r + n,89/0z ,
n, =dz/dS , and n, = —dr/dS
To solve equation (2.12) , we discretize the geometry of the contour of the
bubble into N panels. We assume that the potential @, is distributed linearly over
each panel, while 3®,/3n is assumed to be constant over each panel. Equation
(2.12) then becomes a set of N equations of index i of the type:

13




— 8%

2rdy; = — 2 (Bid;) + E (A., n )

=1 =l
which can be rewritten as

a0
> (Bt = 3 (45p) | (213)
)'l =3
where A;; and B;; are the discrete equivalent of the integrals given in equation

(2.12).

So we perform the integration over each panel, using a Gaussian quadrature,
and sum up the contributions o complete the integration over the entire contour
of the bubble surface.

Time stepping To advance the points on the bubble surface, we assume that
they move with the fluid at velocity V®, + 1J,. The normal “bubble velocity”
(%) is known from the solution of the integral equations, while the tangen-
cial “bubble velocity” is obtained by differenciation of ®;(c) (c is the arc length
parameter along C). The nodes N; are then advanced according to

ON;=ON; + (V& + U,)dt .

To advance the potential, we need G , which is given by equation (2.10).
The time step dt is determined as

dt = (d°‘)n.

T 140572

where V,, is the maximum velocity obtained at time t. That ensures that smaller
time steps are chosen when rapid changes in the potential occur, while larger one

are chosen for less rapid changes.
Results
The results related to this study are in chapter 4.1 to 4.2.

3. Problem formulation

Results of 2DynF's with a Burgers Vortex (see chapter 4.1), have shown that the
bubble in a vortex flow can be elongated in such a way that the ratio of the

14
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bubble’s radius over its length can be very large. In that case if we are near the
bubble and far from its ends, we may assume that it is infinitely long.

This element allows us to use an axisymmetric model of an elongated bubble
in a fully viscous flow.

To solve the interaction between the bubble motion and the flow into account,
without making any assumptions on the flow being potential or not, a starting
point can be the Navier Stokes equations applied to the model. Once determined,
the equations will have to be solved numerically.

3.1. Model definition

Figure (8) shows the model we are studying. The bubble is infinitely long. It is
located on the axis of a Rankine vortex flow. The fluid is viscous. Cylindrical
coordinates are used for all variables. The symmetry of the figure shows that as
long as the axial flow is considered to be constant the problem we are dealing with
is one-dimensional and located from the bubble wall out along the r-axis.

3.2. General equations

To study the problem we start from the Navier-Stokes’ Equations, so we can
fully determine the interaction between the bubble and the flow. Cylindrical
coordinates used due to the geometry of the problem.

The Navier-Stokes equation are written:

VU =0,
DU _ Vp VT
'Et"' P P +g9,

where T' is the stress tensor. In cylindrical coordinates they can be written:
. 18 18 8
divU=0& Py (rou.) + T5% (pue) + o (pus) = 0. @1

aur aur "Oaur “lz our_
Rt e T T T e T

__l%p 0 1 P, _ 20w Fu
partlE rd("")] (’W—ﬂ80+823)’ (3’?)
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18 28u, &

=‘;ao [")]""(:aoe*ﬁ‘b?*w)' (33)

l au. u‘ 8“ auz

F e A ey T
_ 18p G’u, 1 By, , By,
—g—-pa-i- 'dr( u)| + +"(r=ao="'az=)’ (34)

3.3. Geometrical considerations
The bubble is infinitely long and axisymmetric, so all variables are independent

offand z:
au, Bu, Ou, dp
% %% "
Bu, o Bup _ o Bu _ o Op_
2= %= =%5="

3.4. Axisymetric formulation

The axial flow is assumed constant along the r-axis. This slug axial low has no
consequences on the bubble dynamics. It corresponds to an axial translation of
the referential.

So we assume:

u, = 0.
The general equations become (3.1), (3.3), (3.2), (3.3) and (3.4)

%-Q- (rpu,) = 0. (3.5)
du Bu, _ul _-13p
_0t-+u'-5r--_r_-737+ dr ;-d-r. mf)]o (3:6)

e




8u. Oup . u,uy a8
¥} + Uy o +t—= V'-‘; var "W)] (3.7)
The radius of the bubble is a(t); and its time derivative versus time a (¢) also

represents the radial velocity of the bubble wall. We can integrate Equation (3.5)
over [a (t),r] and write

/]
[ 7 (row)dr =0, (3.8)
which leads to
ru, =a(t)a(t). (3.9)

This continuity equation gives us a straight forward connection between the flow
and the bubble behaviour.

By replacing the radial velocity in (3.6) (3.7) by the expression given in (3.9)
and knowing that

1, 0; @an_vi_-1%

Sé +;d 'J(d) Y 2 or’ (3.10)
Sug a . Bu a. v _ al1éd
ot iH T T E e "] @1

We end up with a set of coupled equations that describes the whole region of our
particular vortex flow, in the presence of an interacting bubble.

17




3.5. Initial conditions and boundary conditions
3.5.1. Initial conditions

Bubble aynamics under water are controlled by the difference between the pressure
inside the bubble and the ambient pressure. The initial conditions are simply
stated as a prescribed initial bubble size and internal pressure and the value of
the ambient pressure.

The initial radius of the bubble is

a(0) = a,, (3.12)
and its initial rate of growth

a(0)=0. (3.13)

The initial vortex flow in which the bubble is located is based on the axisym-
metry of the problem and the fact that we are interested in viscous vortex flows.
The radial component must be zero due to the continuity equation (3.9) and initial
conditions (3.13)

(ur(r))emo = 0-
The Rankine flow described in chapter (1) can be used as-an initial condition.

3.5.2. boundary conditions

The cavity contains non condensible gas of partial pressure P, which follows a

polytropic law p, = p,, ({')umd liquid vapor of partial pressure p,, which bal-
ance the external stresses on the bubble surface and the pressures due to the
surface tension o through the equation:

Pe)=p+a (2)" -2 42,200,

mh Bu(a) '
a ad
2;‘T = -2pv¢z—,
and the pressure at the infinity remains constant and equal to the ambient pressure
Poo = const.
18




3.5.3. Non-dimensionalization

The problem will be non-dimensionalized in order to keep the parameters of the
same order.

The scale chosen for the length is the initial bubble radius, a,.
Density is normalized by p and the pressure is non dimensionalized by the
ambient pressure poo

The different scales for velocity, time and acceleration are given by:

i
velocity: U ~ (2-;3) )

$
time: T, ~ a, (-f—) .
Poo

where T, is the Rayleigh time for a bubble in a fluid in the absence of gravity.

acceleration: A4 ~ h.
o

The normalized equations are written, where the bars denote nondimensional
variables.

= Eitl:_(t_) (3.14)
& -I'-3 3 —g(l)z - ?3 = —%p, (3.15)
¥ 3 +=-1 E
where Re the Reynolds

1
,
o 1 a.n 108
7 a,-*‘;’?*aez[ ra ’] (3.16)
aumber is defined as:

=22 [P

vV e
The nondimensionalized boundary condition on the bubble surface is:

N .
Pla)=r+75 (%) “Wl'ei - -% (3.17)
where
19




and We is the Weber number:
We = Sof
o
3.5.4. Discussion on the integration boundaries. Change of variables.

The problem will be solved once the equations have been integrated. The choice
of the region over which we integrate the equations is relevant in this case because
one of the boundaries - the bubble surface - is in motion.
The initial integration region is
[a(t);400].
If we make the change of variable
s=
a(¢)’
the integration region becomes for all times
{1; +00].

We may also encounter problems on the left boundary: +co.

The terms in } of equations (3.15) and (3.16) once integrated out to infinity
will diverge like In(r).

To avoid this problem we limit the integration region to a maximum distance,
the domain then becomes:

[1; 3-:] ’
with

-




In our case we will assume that far distances larger than sy, fromn the bu! ble
the flow is once again potential. This means that the region we are now studying is
separated into two domains: the viscous region on one side, a potential extending
to infinity on the border of which the pressure is:

Plra) = b =26 (5m—)

2% T max

Plsma) =1 - (—2;-;_-“1‘3—(0)’,

where the circulation I is expressed non dimensionally

or

r=rl L.
@o ¥ P
Use of the variable s has implications on the time and space derivatives. For
a point P in the transformed domain [1; Smax] time variations of all the quantities
are in fact made in the real domain while following a particle moving at the speed
Z (t) Therefore time changes of qmtities (such as uy) can be written:

Dy gu_-a. _s 8!1; 8&17
-ET = Bs ﬁ -ﬁ- T
In addition expressions of derivatives relmveto s can be obtained as follows:

o _ 10w Pu_ 1 0w
O ads’' O a2 gs?’

R 19,198 oG 1004 v
S =5 2d Zomn =5 (FR+1E-F).

Equations (3.14), (3.15), and (3.16) become
10

T= (3.18)
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W, 1% (3.19)

DWJ.MI.MI._IIWIWW
-1-)-.{--4-53 + + =T u (‘E’-;-i-’a’ ‘,)' (3.20)

%ta ' Twm YT R
By isolating Z# in equation (3.20) it becomes:

Dy 3-857 1.0 1 _ 11 s 100G W
Tt~ "3 % = —87-;_“‘53“‘+-R—cl’(833+:83 ‘)(321)

Equation (3.21) shows us that if we know 3, @ we have a partial differential
equation for uy that we can solve numerically as a function of s.

Equation (3.19) can then be solved to provide the bubble dynamics and the
pressure field along the axis.

Elongated bubble dynamics.

Equation (3.19) can be expressed as a differential equation of the form

3= Rk(a,d,t),

where Rk is a function.

By integrating this equation along [1; sme] One can obtain the bubble radius
evolution in time.

We integrate (3.19) from the bubble’s surface to spax:

1.2 . 1,. 1 Jomes 1 pom g?
(37 +8) ot ~ 3000 [-55], -3 [~ e
- OBy,
T3 83
and by isolating & the equation beeomes.
. —l 2 . o Smax Smas ﬁz
a=-31 Tzln(s,..)(u) [ 2:’]1 +zln(s-u)/
"t (_s...)/x
22




48/u3

But we also bave

[ PPis = B (smar) -3 (1),
because the pressure at that bounda.ry is that of a potential vortex flow:

T(o-..)=—- -[

and (3.17) gives us information on the pressure at the bubble surface

e TERY NN* 1 23
P(omes) = P = Ploma) - B+ P2 (3) -5~ g
so the equation is finally written:

1

2 1 1
TE(oms) ¥

.. 1. 1 .

, |
- [ () =R @) -] o
with

2
Q=™ 24 (3.23)
Equation (3.22) can easily be solved numencally as described below.

Second set of information: Pressure field along the s-axis.
By integrating (3.17) over [smas; 3] we will obtain the pressure at any point of
the s-axis:

The integration gives us:
1.3 . . " . 3
38 B, + 8 M — 3@ [ ] -3 [ Tas
1 . Op
=72 83
but we also have
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L Bis = p) ~Blouur) =3 (o) - [1 - (2,,1:_)'] ,

so the expression becomes

(lz’n)[ln(s)]' --(u)’[-w i =,

tms  BJomes 3

o))

and the pressure field along the s-axis is finally described by

Pls)=1-- (;—,,E_—r - 8 lln(s)l.... - “ﬂn(’)l' (3.24)

+(2 + f:_“ .
So the final set of equations we possess to solve our problem is:

Doy _ s .8y 1 _ 0w 1 . 11 (00 16m W
77?-'5’79:‘5"5:“:5”“+5?(W+,a, )(3”’
. 1., 1 o 11 1
=37 *Tee [ 233,_,"'2]*311.(3...)0
1 2 1\ o
21n(Smax) ! (2:3:..,) —E+ﬁ(§) " 8oPed |’ (3.26)

Pls)=1- (mET)’ - In(o)ls,.. - Fala(a)l,
+@) = 3‘.7]:_“ i G Wy, (3.27)
Each of these equations are adapted to numerical solutions.
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8.6. Method of solution
3.6.1. Discretization
The gridding of the s-axis is a basic linear discretization using a constant grid-step,
ds.
si=l+ids;i=1n

The parameters are discretized in time or space and both if required . The time
and space stepping is given by:

~ . 1))
+1 _ J “a
W = ()] + di
(s = () 4 ds52

with

) = T; or Pand dt being the time step
and

da
(@);41 = (a); +dt—

with

a=3or @ or d

3.6.2. Numerical tools available

Equation (3.25) is a partial differential equation of one form of a combined advection-
diffusion equation:

Du; oG 0%u;
—D-?—=AT+38 '{"C'az

The numerical method used to solve this type of equation is typically a Crank-
Nicholson’s method. It can be expressed by:

('DF?)J = Ef’.fal‘ﬁ = % (F (@) + F (wi™)). (328)




In our case at time step j, F is the function:

1 — 3 1 — 1 1\aXx 1 13X
0= (553) ¥+ (37 55 ) 7 B

Both left and right hand sides of equation (3.28) are centered at time step
(7 = 1) so the method is second order accurate in time.

The character of this scheme is semi-implicit. The right hand side of equation
(3.28) has terms of time step j and of time step j — 1.

To calculate the spatial derivatives we use centered differences which can be

written:. . . .

3_W ! Ui =W,

ds ), - 2ds ’

(8%1? I _ W{-n +m{-1 - ZW{
dst |, ds?
By replacing the discretized expression of the derivatives in the developed form ‘

of (3.28) we obtain a set of simultanous linear equations that fortunatly forms a
tridiagonal system.

By grouping the terms according to their time step in (3.28) we get:
FEYEE_ + g()a! + h()Tly = AGTTRD] + ()T + M()Galey
i=12.n-1

(the values of the variables at time-step j are placed on the left and those of
time-step j — 1 on the right hand side of the equation)
In a matrix form this can be written

J=1

g1) (1)) 0 0 0 uj, a(l) (1) 0 0 0 ul;
f(2) ¢(2) &2 0o 0 A(2) a(2) M(2) 0 O

0 . . . 0 . = 0 . . . 0

o o0 . . =0 . o o . . X ..

0 0 0 f(n) g(n) ]\ ui, 0 0 0 fin) a(n) ]\ ui’
The only unknowns here are (uy),, , . The right hand side only contains in-

formation from the previous time-step (j — 1) and the matrix on the left band
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side needs information on the bubble dynamics at time step (j) . This will have a
consequence in the logical order needed to solve our problem.

To solve this matrix equation we use an algorithm given for tridiagonal matrix
equations.

Equation (3.26) as an ordinary differential equation.

&= Rk (3,3,t),
with
. 1 1 i
Rk (a,d) = -3+ *uln(s,.,)(’)z ozl T(omas)

O S I I .
F1n(Smax) 2% A8 max Pv+ 7o 3 Wez Rea
can be reduced to the study of a set of first order differential equations

=",

b= Rk (2,3,1).
hello
The numerical solution chosen to solve this set of equation is the most used
fourth order Runge-Kutta method. At each time step the derivative is eval-
uated four times: the initial point, twice at trial mid-poinnts and at a trial end
point. These derivatives then give us the final value of the function
The 4** order Runge Kutta scheme is the following:

ki = dtRK'(t,);),
k; =ditRK(t + £,b; + &),
k3=dtRk'(t+3! b + 3),
k,=dtRk'(t+dt b-+k3),

with ky, kz, ks, k¢ corresponding to the four evaluations of the derivatives we obtain

ky ky k3 k
b;+x—5+1+6+32+33+6‘
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In our case we will also have to evaluate (3.23) at each time-step. A basic
trapezoidal method was used:

o= ([~ ey 5[5 ¢

3-4-1

3.7. Algorithm of solution

By contrast with equation (3.25) in which the semi implicit method used implie
that we need information on the bubble dynamics of the current time step to
determine the unknown (12" ) , equation (3.26) only needs the initial conditions
of the bubble dynamics and the initial low. Thus (3.26) will be delt with before
(3.25).

At this point a flow chart is needed to show the algorithm :see figure(9)

3.8. Description of the code

The program solves the Navier Stokes Equations for an infinitely elongated bubble
in a viscous vortex. The input allows the user to specify the following parameters:

and
/T

Pazis
The Reynolds number and the Weber number are automatically calculated in
the program.

3.8.1. Convergence study

Numerical methods need a test on the convergence. This is to check stability and
convergence due to accumulating errors. The scheme applied here is to reduce
the time step and grid size simultanously, keeping a constant ratio between them.
Figure (10) illustrates the scheme. Each curve is related to a different timestep
and grid size. As the latter decrease the curves converge to a smooth curve.
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Between dt=0.002 and 0.001 the difference in the curves was undetectable. For
running the tries that are studied in capter 4 we chose 0.001 as a time step and
0.01 as a grid size.

3.8.2. Varying time steps and grid size in time.

The runs that we made showed that in some conditions a too sudden bubble
collapse could stop the code from running due to large errors.In other cases when
the bubble wall velocity is at very low the time step could then have been increased
to speed up the execution. A variable time step scheme still has to be implemented
on the code. It would shrink the time step in cases of high rates of growth and
keep the ratio between the time step and the grid size constant.

3.8.3. Case of the axial flow.

The study has been neglecting the axial flow.We could observe the Navier-Stokes
equations now with the axial flow:

oub
'lz;to,%‘:-' #0, ‘3‘;#0

Du.. 8'# ulz r lap
Dt +u'8r T tug = [rdr( 0:’
Duo 8uo
Dt 8r+ r +u'0 -"—[ 8:’

Du, Ou, Urthy Ou, -1 8p 8’u,

Dt+u'8r+ r tWg, = paz+ rdr[d(u')
and the continuity equation

. 18 a
dwU=09;-a-;(rpu,)+-8—z(pu,)-0

The assumptions on axisymetry remain valid but the problem has gained one
dimension in its geometry.




4. Results analysis.

This chapter sums up the results obtained from the two methods develloped in
the two previous chapters. The shortage of time has a considerable impact on the
range of parameters we were able to study. This needs to be taken into account
when reading any conclusions concerning the results.

4.1. 2D bubble in Burgers flow.

For each run, the value of the initial radius of the bubble was equal to 102 m,
the value of the initial core radius was 5 - 10-2, and the initial pressure inside the
bubble was 5 - 10° Pa, while our reference pressure, P,, was 10° Pa.

The first set of trials that we conducted aimed at determining the infuence
of C, the Burgers constant, on the flow, and as a result on the evolution of the
bubble, while the vorticity diffusion is only due to the evolution of § in time.

We may define by T the “top point” of the bubble, moving on the z-axis, for
z positive if the bubble is centered on O. B is the “bottom point” of the bubble,
moving on the z-axis as well, where z is negative if the bubble is centered. Let 1
be the “side point”, moving on the r-axis during the evolution of the bubble. (see

figure(11)).

4.1.1. Strong basic velocities.

Let us consider the case where C is positive (this is the most physical case).
According to the formulation of the vortex core radius, the variation of § in time
should lead to two physical cases: either the bubble is within the viscous core
(a(t) < 6()), or the bubble radius is greater than the vortex core radius. If C is
strong enough, we can observe the variation of § in time. But in this case, we also
notice that U, and U, cannot be neglected. Thus if C is of the order of magnitude
of 1, a bubble in the vortex is submitted to these velocities, and is very quickly
stretched to become an elongated cylinder along the z-axis. The ratio §} can
even reach 10° before the bubble divides into two elongated bubbles, which then
move along the z-direction.

The more C increases, the quicker the bubble is stretched and subdivides, and
§ has no time to change (we cannot observe any vorticity diffusion), and so has
no influence on the deformations of the bubble, because of the collapsing speed,
which depends more on U, and U, than on Uj.
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So the resulting velocity and pressure field are mostly due to the basic flow,
which is hardly modified by the “bubble potential”. It means we cannot define
any region of interaction dominated by the bubble dynamics. A large number of
trials showed this was still true while C > 10~2.

4.1.2. Strong interaction of the bubble with a low velocity field.

This case deals with trials performed with a small Burgers constant. The previous
subsection leads to run the code with lower Burgers velocities, when C is less than
10-3.

If the initial pressure inside the bubble is greater than the pressure in the
liquid near its boundary, the bubble has time to grow, and we then can define a
zone where it has a real influence on the basic flow, in terms of pressure and of
velocities.

Bubble on the axis. When the bubble is centered on the axis and in the initial
conditions shown figure(12), it first grows up to twice its initial volume, and then
collapses (see figures 13). During the second growth, we can observe an elongation,
but only such as the ratio OT /O reaches 2.

We must notice the presence of a stagnation point, where the “bubble velocity”
cancels the basic velocity. It means there is a stagnation ring around the bubble.
G, the stagnation point in the plane § = 0, is moving

e on the r-axis when the bubble grows (figure (14)),

e on the bubble surface when the distance of the side point from the origin
is decreasing while the distance of the top point from the origin increases

(figure (15)),
o and on the z-axis during the collapse (figure (16)).

The analysis of the resulting pressure distribution leads to considerations about
the location of the highest pressure points: during the first period of the bubble, we
notice, around the bubble, the presence of a high pressure ring, whose intersection
with the plane § = 0 is the point H (see figure (17)). The distance between H
and the surface of the bubble varies in the same way as the distance between
the bubble surface and the stagnation point. This evolution first shows a short
unsteady period right after the begining of the growth, after which H oscillates

31




das/u3

around a medium position in an almost steady pressure distribution, until the
pressure in the bubble reaches its peak. It occurs at time 4 on the drawing , and
the highest pressure point in the liquid is then at the bubble surface.

The explanation comes from the continuity at the bubble surface, where the
pressure in the bubble, and the surface tension balance the pressure in the liquid.
This implies that the pressure in the liquid near the bubble must follow the pres-
sure inside the bubble. The growth of the bubble, due to a low pressure zone near
the boundary implies that the highest pressure point is near the bubble at the
begining, and then moves, because the pressure in the bubble decreases. At the
end of the collapse, the pressure increases in all the liquid, because of the peak in
the bubble.

Thus point H characterizes the bound between the “bubble” or the basic flow
predominance: beyond H, the resulting flow may be considered as following a
displaced Burgers distribution still depending on the interaction; within H, the
bubble flow is predominant.

Bubble moving on the z-axis. Figure(18) illustrates the evolution of the
caracteristic points in this case. With the same initial conditions as the previous
case, except for the location of the bubble, which is now initially off-centered on
the z-axis at Z, > 0. During the growth of the bubble, the z coordinate of the
stagnation point follows the ceater of the bubble (figure(19)), moving on the z-
axis. As the high pressure point is far from the bubble, it does not present any
particular evolution due to the non symmetrical evolution of the bubble. Figure
(20, 21, 22) describe the velocity field evolution in time. (t=4,5,6,7).

4.1.3. Intermediate interaction and stretching.

The case of C = 103 is an intermediate case where the bubble is quickly stretched
along the z-direction (figure (23)), while the side point oscillates as in the previous
case. The bubble has time to grow and to collapse during its elongation. As the
distance of the top and the bottom points from the origin always increase in time,
the stagnation point remains on the r-axis, moving between the bubble surface
and its maximum value (figure (24) to (27)).

The highest pressure point remains close to the elongated bubble; it means
that the Burgers pressure distribution, as the velocity field, is modified only near
the axis at the bubble surface, where it is influenced by the bubble dynamics.




4.2. A more realistic vortex.

As the 2D-axisymmetric code runs with any basic flow, it becomes more interesting
to deal with a physically more realistic model of the vortex. That is what we did,
considering the results obtained with a Navier Stokes solver (FIDAP) using as
boundary conditions a Rankine Vortex and a uniform axial velocity at z = 0, and
allowing the vortex to decay with distance x increasing, sent to Dynaflow by the
“LABORATOIRE D'HYDRODYNAMIQUE DE L’ECOLE NAVALE". Figures
(28) to (33) describe the results in absence of a bubble. This flow is used as a
basic flow. We modified the axisymmetric code 30 it could read in the Fidap
output file each time the axisymmetric code needed the basic flow. Since Fidap
uses a predefined fixed grid, as the bubble is in motion, the basic flow at each
node was calculated by linear interpolation.

In this case, the resuits show that the bubble has more complicated deforma-
tions than in a classical Rankine or Burgers case. These deformations are charac-
teristic of a bubble moving with a lower speed than the fluid. Theeomequemeu
a reentrant jet moving downstream in the direction of the z-axis when the bubble
collapses. Figures (34) and (33) show the evolution of the three characteristic
points of the bubble, and its deformation in time.

4.3. 1D viscous solver.

Our interest lies in the interaction between the bubble and the fiow. Therefore
we will analyze data related to the bubble motion:

-bubble radius and velocity,

-bubble collapse period and amplitude,

and related to the flow:

-flow field,

-magnitude of the maximum tangential velocity and of the velocity.

-motion of the core radius.

4.3.1. Physical parameters.
The physical parameters modified for each run of the code are

A _T _ pe
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The ratio of the initial core radius and the initial bubble radius relates infor-
mation on the influence of the size of the viscous core on the bubble.

The circulation ratio gives us the effect of the swirl’s strength on the bubble
dynamics.

The ratio between initial gas pressure in the bubble and the initial pressure
on the axis determines its reaction to the ambient medium.

4.3.2. Evidence of the interaction.

To show some evidence of the interaction between the bubble and the viscous
vortex we considered two cases: one where we forced the flow not to interact and
another where the flow was interacting. Figure (36) illustrates the diffferences in
the bubble dynamics anf figure (37) shows how the flow is modified by the bubble.

Analysis of the interactiv bubble. In figures (36) and (37) the initial
pressure inside the bubble is lower than the outside pressure, therefore the bubble
starts by collapsing. As the bubble wall moves inward the viscous core shrinks,
simultanously enhancing the tangential velocity to a maximum when the bubble
rebounds. As the bubble grows again the core expands and the tangential veloc-
ity decelerates to a minimum before the bubble collapses a second time. When
the fluid particles are pulled towards in towards the vortex axis they accelerate
tangentially. This is similar to the phenomenon of vortex stretching . As the core
is compressed the stream of vortex lines is also compresed 3o the vorticities are
stretched and the swirl around the bubble becomes stronger.

The fact that the core moves is a relation between the diffusion through vis-
cosity and the bubble motion. It has been observed that in physics transfers
of matter, energy and momentum always tend to bring the material towards an
equilibrium. In our case the bubble is growing inside the fluid; the velocity being
non-uniform along the r-axis, tangential components of the local stress appear in
the fluid. The layers of fluid around the bubble have different tangential velocities

Ou,
o *0
This derivative is related to the shear through the expression:
P
R ™
where o, is the stress tensor.
K7}




The growth of the bubble adds a radial velocity to the layers of fluid, so they
move back, which explains why the core is expanding. But as the distarce between
one fluid particle and the axis of the swirl increases its tangential velocity drops.
This is due to conservation of the total momentum in the fluid.

On a larger time scale viscosity also has an effect on the field. This effect is
illustrated by a constant decrease of the peaks of ugu., in time and can be related
to the diffusion effect quoted in chapter 1.

Thus a viscous interaction is taking place between the bubble and the flow.
Now we need to determine a criteria on the different physical parameters that
tells us in which conditions the viscous interaction is most likely to be relevant.

4.3.3. Parameter analysis

This set of results allows us to find out which parameters we should vary to bring
out the key elements on the viscous interaction between the bubble and the flow.

a. Circulation

By changing the circulation of the vortex, we simultanously change the initial
tangential velocity in the fluid and the pressure on the axis. In this case when
analysing the results we would need to find out which of the parameters I or -
are acting most in the behaviour of the interacting bubble.

Figure (38) illustrates the drop of the initial pressure on the axis due to an
increasing circulation. The bubble experiences growth in one case (T' = 0.6) and
collapees in the other (T = 0.1).

Figure (39) shows the interaction of the bubbles with the vortex is shown as
we plotted the size of the viscous core and the bubble radius on the same graphic.
We can observe (see figur (39)) that the viscous core practically vanishes at bubble
collapse.

Figure (40) shows that the absolute pressure at collapse (curve 1) reaches 7
atmospheres.

The tangential velocity is modified at each collapse as we explained in 4.3.2.
When the bubble grows from its initial value the effect on the magnitude of uy is
less apparent (see figure(41)).

b. Changing 4: by modifying A..

The modification of the core radius influences the initial pressure on the axis.
The two cases in Figure(42) and Figure(43) show a bubble collapsing and a bubble
growing from their initial positions and the motion of the viscous core with the
bubble. A growing bubble generates a pressure drop around it (see figure(44)).
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This pressure drop seems to increase the size of the core and decreases the mag-
pitude of the tangential velocity. A collapsing bubble sees a pressure increase
around it, which compresses the viscous core and increases the bubble velocity.

It is still too early to make conclusions on the interaction laws of a bubble and
a viscous vortex. These first results have shown that the physical parameters we
can modify to find an interaction criteria are:

P
Pasis
and
A
a
(by changing a, only).

The caracteristics that seem most relevant to our study are: the bubble radius
vs. time and the ratio of the core size over the bubble radius vs. time.

These two caracteristics give us information on bubble behaviour and simul-
tanously of the effect it has on the viscous flow.

c. Varying parameter: -’4-

The case of a very strong eolhpce for 2 = $10~! on figure(45) has a relevant
influence on the size of the viscous core (ﬁgum(w)) At the rebound (t=2.1) the
core size increases as much as 8.5 times the initial buble radius and stops growing
as the bubble motion decelerates. For less sudden collapses (2% = 0.4) the core
interacts with the bubble in the same way as in previously shown pees. In
the case of an initial gas pressure inside the bubble close to that on the axis , the
small variations of bubble radius in time (figure(47))have hardly any inﬂuence on
the core. Let p,, be three times that of the pressure on the axis. The bubble
then grows and collapses at a given period (figure(48)), the core behaves like the
bubble: it grows and decreases with time.

A first conclusion would be that the influence of the bubble on the viscous
core is diminished as 28 pears 1.

d. Varying parameter:4: where a, is being modified.

Looking at the ratio of the core radius and the bubble radius can teach us how
the interaction between the bubble and the core is modified when one size is small
compared to the other.

In this study, we do not investigate initial bubble sizes larger than core sizes.

Figures (49) and (50) show the evolution of the interaction when the ratio 4
is halfed. The period of rebounds of the bubble is decreasing; It seems that the
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closer the high tagential velocities are to the bubble(u,,,, corresponds to the core
boundary) the collapse nd the rebound of the bubble occur.

The amplitude of the core size variations increases with the ratio 4s. In figures
(51) and (52), as the ratio 4 decreases the period of rebounds still decreases, but
by measuring the amplitude of the bubble motion, we observe that between a, =
Imm and a, = Tmm, the trend in the amplitude variations has changed. Figure
(53) shows this non linear phenomena.We see that the bubble radius minima vs.
time is increasing and then decreasing.

The only conclusion we can make at this point of the experiments is that the
interaction between the bubble and the viscous vortex fiow around it seems to be
non-linear.

5. Synthesis

In the two previous chapters we studied the interaction between a bubble and a
viscous vortex flow from two points of view: one makes the assumption that a
basic flow around the bubble is modified linearly by a flow created by the bubble
through the equation:

U =U, + Upasics
and the second uses a viscous solver.

§.1. Matching the solutions.

In order to match these two solutions: a viscous solver should be coupled to the
code 2DynaFs.We would need to extend the viscous solver to the case where the
axial flow is taken fully into account. Then the bubble studied would both be
axisymmetric and finite.

2DynaF's showed that the bubble on the vortex axis elongated before splitting
up. The infinitely elongated bubble viscous solver enables us to illustrate the vis-
cous interaction with the vortex in a region far from the ends of that same bubble.
The stretching of vorticity and the motion of the core radius related to the bubble
dynamics only occurs in particular domains of the physical parameters. Outside
these areas we can always implement 2DynaF's without the viscous solver. In the
regions where viscous interaction is strong, we would need a 2D (Axisymmetric)
viscous solver. So the cases where the bubble generates a potential flow in absence
of shear flow could then be complemented by adding the effects of viscosity.
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CONCLUSION

Significant results have been obtained in this parallel study of bubble and flow
interaction. On one side the influence of C (Burger’s vortex), and mostly of u,
on the bubble motion, interesting results concerning FIDAP’s vortex flow and its
interaction with the bubble were obtained. On the other side the effects of viscous
interaction on bubble behaviour and vortex flow behaviour were highlighted for
the first time.

The general problem of bubble and flow interaction, especially the viscous
interaction point of view which still needs to be develloped in 2D or even 3D,
remains a domain not yet fully understood. Step by step and from various direc-
tions we get closer to the resolution of the problem. In our case we decided to take
one approach from the point of view of the flow by studying bubble motion with
new vortex models containing axial flows and which were more realistic physically.
The other approach tried to take bearings from the point of view of the bubble
and of the flow simultanously in a simple 1D model of fully viscous interactions.

Further studies, experimental as well as numerical, should enable the under-
standing of bubble and flow interaction in a near future.
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BURGERS VORTEX WITHOUT BUBBLE
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Abstract

This study computes the deformations of the free surface of a liquid
when a sphere is oscillating below the surface. The code 2DynaFS was
adapted to this problem and, after determining some fundamental param-
eters, we proved that the surface tension effect can often be neglected. We
primarily studied the importance of gravity and showed its effect on the
amplitude of the resulting waves. The sphere frequency also seems to de-
termine the amplitude. A brief experimental study was conducted which
verified the conditions we had choosen and confirmed some of the numerical
computations. A video recording of the observations is available.
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1. Introduction

Waves are often studied in hydrodynamic circles because they carry energy. This
energy can be due to the wind: the study of swell and waves breaking on shore
helps to determine a way to avoid shore erosion. The study in this report is mo-
tivated by wave-resistance: when a submerged body moves below a Free Surface,
it generates waves which extract energy from the body motion. We will here only
study the deformations of the free surface when a sphere is oscillating below this

free surface.

We conducted experiments in the laboratory DYNAFLOW in order to validate
some of the computed results. Obscrvations arc available on a NTSC video tape.

1.1. Nomenclature

FS: Free Surface

®: velocity potential

¥: mathematical function

V. gradient operator

z: Horizontal position

y: Vertical position

R: radius of the sphere

App: amplitude of the

sphere motion

w: frequency of the
sphere motion (22¢)

T: period ( = )

V2. Laplacian operator

Fr: Froude number

£: partial derivative
Amplitude: computed
amplitude of node A

s: curvilinear abscissa Ngyp: number of half periods

ht: time step
t: absolute time
p: density of the fluid
P;: pressure in the fluid
P,: atmospheric pressure
Va: normal speed
Vi: tangential speed
g: gravity acceleration
(0,7, 7): reference frame
o: surface tension
Cyrv: curvature of the FS
§,: delta-function

=0 except at p: =1
Web: Weber number
%: total derivative
Average pos: time averaged
ordinate of the node A

All figures are located in Appendix A.

depeno: initial depth of sphere

7': vertical deformation of FS

7': normal vector

Vipa: velocity of the sphere

Q: domain of the study

S : boundary of Q2

¢(p) : solid angle at p

p: point where the influence
of every panel is computed

¢: moving point on a panel

FT: final time

v(p): discrete function of p

Lg,: fluid layer on the sphere

var: non-dimensionalized var

nrg: number of panels on FS
Frequency: frequency of
the FS waves




2. Hydrodynamic problem

2.1. Equations

The conservation of the mass in the liquid of density p leads to the continuity
equation for a flow with velocity V.

% + div(pV) =0
We assume that the fluid is inviscid, incompressible and irrotational. Then it
satisfies the following equations:
div(V) =0,
rl(V)=7,

Thanks to these conditions, the flow is a potential flour

V= grad(®) ,
where ® is the velocity potential. We can then write the Laplace equation :

V?® = 0 inside the fluid domain . (2.1)

The motion of the sphere is forced and the location of its surface isprescribed
by the relation :
z(6) = R-cos(8) 6 € [-§;+§] 22)
y(z,t) = R - sin(arccos( ) + Amp - sin(w.t)
The velocity potential ® also has to satisfy the Bernoulli equation :

a® 1 1 a2, 12 e
%, P-3 (V24 V23 +g-y=Constant (2.3)




2.2. Boundary and initial conditions

The pressure balance on the free surface can be written:

Pi—P,=~0-Cuv (2'4)

On the Free Surface, the normal potential variation determines the motion of
the FS :

g—: = %Z—?Tz’ where n =y — Depthy (2.5)
On the sphere, the potential gradient normal to the sphere surface is set equal
to the normal velocity of the sphere surface :

Vo7 = V.,]..?i’ (2.6)
The initial conditions are the following:
FREE SURFACE :

®=0 _
SPHERE :

y=v1—$i-Am’ att=0
=0 ($=0)
This last condition determines the functional form for the speed of the sphere:
sine instead of cosine, in order to avoid any discontinuity in the sphere speed.
The radiation condition consists in forcing both the abscissa and ordinate of
the node Inf (Fig.3.5.B) not to change. We also impose a minimum layer of liquid
on the sphere in order to allow the abscissa of the node A not to change. The
value of this layer is choosen equal to 5% of the sphere radius.




3. Mathematical resolution

3.1. Laplace equation

We use the Green's identity:

[lfo div(V®)-dQ = [fs 52 - dS

to modify the Laplace equation by introducing a regular function ¥ that is
C in our domain 2 (except at a finite number of points):

0=[[foV?® ¥ -dl = — [[[, Ve V¥ -dQ + [[s L ¥.dS

We can apply the Green'’s identity on the first term on the right hand side:

oV -V dQ=—[f[o® -V?V-dQ+ [[c®-§L-dS

And then obtain :

//%:;.\p.ds_//q;.%g.dS+///O.V’\I!-dﬂ=0 (3.1)
s s a

A convenient function ¥ is :
¥(p,q) = ],.;1 where |p— g} = ‘/(z, -z¢)* + (4, — v)?
Where p is tLe point where the influence of every panel is computed, q is a
moving point on the panels.
The Laplacian of ¥ is then quite simple : Vi¥(p,q) = ~v(p) - 5
6, is the delta function: §, =1 at point p, §, = 0 anywhere else.
v(p) depends on p :=4xif p€ N
=2xif p € S (regular point)
= ¢(p) = solid angle if p € S (angular point)
And the expression of the third term in equation (3.1) is :

[ & v*¥-da = —3)- 2()
Q

The final equation is :

J[5-v-as- [[ ¢33 d5 — () 8(p) = 0 (3.2)
s s




At this step, all the equations are true for both the axisymmetric and the 3D
problems. We now consider the axisymmetric problem. We can observe that we
have reduced the dimension from 3 to 2. The next step consists in discretizing the
boundaries of the free surface and the sphere into panels whose size is discussed
in 4.1.1.

The power of the Boundary Element method consists in its ability to solve
these integrals once we know either ® or 42 on the boundaries (there can be a
mixing of the two of them). For more complete explanations, the reader may refer
to A.A. BECKER 'The Boundary Element Method in Engineering: a complete
course’.

We grid the boundaries and then fill the matrix of influence of every panel on
each node. The matrix equation system obtained is :

[XI'[%%]+[Y]-[°I+[ZI=0

As we know @ for some boundaries and % for the others, we can arrange this
system to represent it in this way :

f@@l/an' rBl'Ql'f‘Cl

.6@.'/371 .B.- - ®; + C;

(4] i1 Biy1 - 0%i41/0n + Cin

e, | [B.-o®gon+c. |

unknoun knoun




The matrix A is fully populated with non-zero coefficients. This would have
made too long and imprecise any iterative solution method. The Gaussian elimi-
nation has been chosen because of its robustness and absence of iteration.

We then obtain :

( 801/8'!1 ] ’Bl-Q1+C1

b@;/an; = (A" .Bi -9+ C;

it Biyy - 0%;41/0nis1 + Cipr
L 61: .Bn * 8Qn/anu + Cn

At this step, both ® and 42 are determined at each node and interpolated on
each panel. We can now implement these results in the equations.




3.2. Non-dimensionalization

The original code, 2DynaFS, had all its subroutines made to solve non dimensional
cquations (and thercforc nceded non-dimensional variables). As we will show
below, two characteristic numbers appear in the non-dimensionalization of the
Bernoulli equation.

The characteristical scales are :

R = radius of the sphere (L)
T = 2= period of sphere motion (T)
p = density of the fluid (M.L™3)

The other parameters are non dimensionalized according to their units :
(L2-T-Y) w(LY) V(LY
(3.2) becomes :
[s$2-¥-dS~[[s® 57 -dS —1(p)-®(p) =0

s ER 3T BdS - 1, 5F-3F - BB - 1(p) - FF(p) =0

a%® v
:{/5%--@--43—{/3‘%-ﬂ"/(?)"(p):() (3.3)
(2.2) is immediately expressed :
T(0) = —cos(0) 6 € [-x;+x] (3.4)
§(z,t) = VI— 2 + (4g2) - sin(w - ¢) '
(2.5) becomes :
PR=-%5 (3.5)
%:%% y = 2 4 57 (on the free surface)
(2.6) becomes :
(4% - R) V8.7 =(§R) Vo ® (3.6)

—_
V3% = V., u7 onthe sphere surface




3.3. Bernoulli equation

Far from the axis of the sphere motion, ® is constant, the velocity is 0, Z = depth,,
the pressure is P,. (2.3) can be written :

Qb L. (V2+WV)+g-Z=0- Lo 0+g-depth
%=ﬂ‘—“"1+, (V3 + V) = g- (¥ — deptho)

If we insert (2.4) :
PJ—P¢=-0'Cm

n =Y —depthy
We finally obtain :
a@_l 2 3 U'Cw
5 =35 (VatV)—g-n P

Units of additional parameters : ¢ (M.T~?) Cyp (L7') P (M.L1.T-?)

=18 (V. .
21 +v=)_(g,) - (2%) T

=5 (Vat Vi) - Frg— Ty (3.7

Here Fr is the Froude number and Web is the Weber number.
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3.4. Implementation

With 32 “ on each panel,a subroutine computes the velocities of the nodes:

RT § = aﬁm\ce(:':dlc-‘.:wde ‘-u) Vi = %:'i + (%%i-n - %.) - ds
RR;= (- 7.V -RT - 7. :) Vi = RT; + (RTi1 — RT:) - ds
RZ; 80 —>—++RT -o-o) Vriy1 = RR; + (RRiy1 — RR;) - ds

=\ v Vziyr = RZ; + (RZiyy — RZ;) - ds

The indices i refers to the spatial gridding. All these results will now only have
the extension new.

The code determines the time step: ht = D®p, - ﬁi‘ﬁ . Here D®may is an
input parameter, equal to 102 for all the runs ; V,, is the highest velocity com-
puted at the nodes. This is made to keep the velocities in a limited range to avoid
both unnecessary long runs and error in the time stepping. The displacements of
the nodes are as followed:

Tnew = Tprev + 1. (Vrnew + Vr"“) - ht
Ynew = prev + 3° (VZMW + VZ,"W) - ht

and we can determine the positions of the panels. A subroutine gets the curvature

of the free surface.
The code can then compute % thanks to the non-dimensional Bernoulli equa-
tion :

5% _ 1
& Wbc::

With the previous valu& of ®, we can then obtain the new value of the po-

tential ®:
1 [0® 1)
Bpew = rrw+‘2’ . (_ﬁmm+—3-prn) - ht

The code averages the variations of the velocities and the potential normal
derivatives. This is made to minimize error accumulation.

The code realizes a regridding if necessary, implements the absolute time with
the time step and then use the new values of ® and %: to redo the same work.
The code ends when the time exceeds an imposed limit : FT.

1 P+ VY- Frog-

11




3.5. Gridding

The Boundary Element Method consists in computing integrals of the influence
of panels on each node. The gridding is important to obtain valid results.

In this code, the distribution of the nodes on the sphere is uniform (fig. 3.5.B).
The length of the panels is constant and equal to 0.1416 + R. This length was
choosen because of the curvature of a sphere: 10 panels on half a perimeter make
the gridding of the sphere precise enough.

The free surface is regularly gridded from the node we assume to be at infinity
to the axis (fig. 3.5.A) but the distance between the nodes may change in time.
The code calculates, at e2ch time step, the position of each node. It then inter-
polates the positions of tiie points between the nodes. The code can then regrid
the free surface in order to concentrate the panels in the fast moving zones. This
option is important when the amplitude of the free surface becomes large.

The node we assume to have the highest displacement is the node above the
top of the sphere. This node, number nseg + 1 is called node A.

3.6. Computational power

The codes were ran on three computers:

Computer: Capacity:
MIPS RISComputer RS 2030 12 million instructions per second
MIPS RISComputer RC 3240 20 million instructions per second
Silicon Graphics IRIS Indigo 85 million instructions per second
12




3.7. Data analysis

The code generates two data files: POLES which contains the ordinate of nodes
A, B and C (Fig. 3.5.B) every 10 time steps; and 2DCONTC which contains the
coordinates of every nodes - sphere and free surface - every 100 time steps.

We only focus on the node A because we estimate that the history of its
ordinate has the largest variations. The second reason consists in that the abscissa
of only two points cannot vary: node A and node Inf. As the node Inf is supposed
not to move, we follow the node A.

We wrote a small fortran code, spectral.f (Appendix B), to analyze the POLES
data. A subroutine calculates the Fourier transformation of the ordinate of node
A. As the time step may vary, this transformation read the current time step
in POLES. The evolution of node B (the top of the sphere Fig. 3.5.B) is also
analyzed as a reference. A subroutine determines the maxima of the transform
and arranges them in decrcasing order.

The frequency that has the largest weight will be refered as the first frequency;
the frequency that has the second largest weight will be refered as the second
frequency.

Another subroutine computes the time average of the ordinate of node A, the
result is Average pos. The code then determines the amplitude of all the half
periods of A and then divides their sum by the number of amplitudes computed;
the result is Amplitude.

Average pos = 2z fT{VA(?) E(?)}

Amplitude = g TZV"r A

These computations are explained on the figure 3.7.A in Appendix A.

The second file 2DCONTC is used to obtain graphic representation of the
evolution of the free surface. We wrote a fortran code, smart.f (Appendix B),
to represent the evolution of the free surface in time, using a convenient format:

abscissa = abscissa — 5;-5 -Time
ordinate = ordinate — 3? - Time
These figures are shown in 3.7.B in the Appendix A.

13




4. Results and Interpretations

4.1. Reference run
4.1.1. Panel-Width

The first part of the runs consisted in determining the range of validity of the
code. We first focused on the size of the panels on the Free Surface. This was
made in order to have the widest panels but without any larger than 1 of the wave
length of the generated waves when the amplitude was above { of the wave length
of these waves. The average size that we determined is 1 of the Sphere radius :R.
On the sphere, the size of the panelsis: J5- R~ 0.31{2+R
Figures 3.5.B

4.1.2. Free Surface Width

We then determined the width of the Free Surface (fig. 3.5.A). We wanted to have
the smallest free surface without any change in the results (the indicator was the
behavior of node A). It appeared that this FS-width is in some way related to the
frequency of the sphere movement : FS-Widthy, = 20 R for w > 4 -'4:1 . When
w = 2 22¢ apnd FS-Width= 40 R, the history of the node we are following does
not match the history of the same node when FS-Width= 20R for more than 5
periods. These both conditions are valid for our runs.

The number of panels is related to the FS-Width: as the panel size is R, the
number of panels on the free surface is nrs = 2-FS — Width. As the computation
time is related to n3, where n is the number of panels, we definitely needed to
have the smallest value for n. We decided to keep the sphere pulsation w > 7.5 in
order to be allowed to have n = 10 4 20 - 2 = 50 panels.

14




4.1.3. Initial depth of the sphere

In the series 1.1 (1 to 6), the initial depth is the only parameter that changes. The
goal was to obtain the largest deformation but still stay in a parameter range in
which the calculations are stable. The code is not made to deal with the sphere
contacting the air. With an initial depth below 1.5R, the code failed to compute
20 periods because a liquid separation appeared (drop).

The average position of the node A (Fig. 4.1.3.A) is equal to the initial depth
as long as the initial depth is larger than 2.5 R. At smaller initial depths, the
average position stays above the initial depth as if there were a natural layer of
water on the sphere. We can easily check that this layer is not the imposed layer
because its value is between } R and 1R as the imposed layer was L R.

The amplitude increases as the initial depth decreases, keeping the variation
of the sum of Average position and Amplitude small compared to the magnitude
of this sum.

We can now notice that when the initial depth is 2.25 R, neither the amplitude
nor the average position seem to follow the general trend. We might be in a
particular case where the conditions imposed excite a resonant frequency of the
system.

A run was made with an initial depth = 10- R. This was to check the validity of
the code without the FS / SPhere interactions. We can observe that the amplitude
is almost null and the spectral distribution is then quite flat.

In all these runs, the main frequency is always 1*sphere frequency (Fig. 4.1.3.B).
Its weight in the spectrum is always the highest one (Fig. 4.1.3.C) and above 40%.
This means that with these conditions, the response of the FS is periodic with
the same period as the excitation.

The second frequency, 1.15+sphere-freq in most of the cases, can be inter-
preted as a modulation of the main signal by one of its harmonic responses whose
frequency is 1 of the main frequency:

y= (Amp +B- cos(-“’;g)) - cos(w.t)
y =Amp - cos(w - t) + B - cos(%!) - cos(w - t)
y=Amp-cos(w-t)+ B - (cos(%'! +w-t)+cos “’T"-w-t))
y=Amp-cos(w-t) + B.cos(2-w-t) + B-cos($-w-t)
2115 § ~ .85)

15




4.1.4. Sphere frequency

The series 1.2 (8 to 13) have w as varying parameter. The Froude and Weber
numbers are both varying with w :

fr:g-zi- =gﬁ

2. B
Web =2 - 55

As w increases, Fr decreases and Web increases. We can see that in the
Bernoulli equation (3.7) : % =1 (—V: + V) - Fr.5- w3 - Cure

gravity (Fr) and surface tension (Web) yield their importance to the inertial
effects.

As w increases, the average position increases and the amplitude decreases.
On figures 4.1.4 we can see that the sum of Average Pos and Amplitude varies
smoothly with w.

We must be aware that in the meantime, the characteristics of the excitation
have changed. We will only be able to further this study when the importance of
the Froude and Weber numbers will be better known.

4.1.5. Amplitude

The amplitude of the sphere displacement were kept equal to R . This was kept
constant in order to only focus on the effect of the Froude and Weber num-
bers. We are here mainly interested in large amplitudes. The reader may refer to
A.Ergin Journal of Ship Research Vol.36 1992 for experiments with small ampli-
tudes.
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4.2. Importance of the surface tension

The effect of the surface tension is expressed in the Bernoulli equation through
the inverse of the Weber number. In our runs we decreasesd the Weber number
from 1394 to  while maintaining the values of the other parameters (gravity and
inertia).

The figures 4.2 A, B and C show us that the surface tension has no real effect
on the FS deformation either for the amplitude or for the frequencies or their
distibution.

AAverage Posmey = 0.7%
AAmplitudemex = 0.8%
AFrequencyl =0 AFrequency2=10
AWeight 1 = 4% AWeight 2 =13%

The average amplitude remains constant as the Weber number decreases; its
value smoothly increases as Weber number is less than 1 (coefficient greater than
1).This case is reached when the surface tension is greater than 100. This value of
the coefficient could be reached when the radius of the sphere is very small (but
the Froude number would then be very large).

The high variation of the Weight of the second frequency indicates the begin-
ning of the zone where the Surface Tension effect should no more be neglected.

17




4.3. Importance of the gravity

The effect of the gravity is expressed in the Bernoulli equation through the Froude
number. We noticed in the previous paragraph that the surface tension had no
effect on the deformations of the FS, so the Bernoulli equation can be written :

{=1V+Vo)Fr g

. (4.1)
gravity

As there is no coefficient for the inertia effect, we can only increase or decrease
the importance of the gravity. In many studies, the cases considered have either a
Fr»1 or Fr <1 inorder to either consider the gravity as the main effect
or neglect it to easily linearize the Bernoulli equation.

As we have no intention to linearize this equation, it appeared interesting to
study the particular case of Fr ~ 1. The results can be observed in the series
IL1, figures 4.3. A, B and C.

In these figures, 7!? show the aborted runs (less than 20 periods) caused by
the apparition of drops; in these particular cases the results are altered by too
limited data analysed.

The average position (Fig. 4.3.A) of the node A has no large variations (max-
imum 5%) except in the case Fr = 35 but this case could be interpreted as the
beginning of the category Fr < 1.

The amplitude seems to increase with the Froude number. We can expect a
physical limit to this amplitude because of the energy limitation.

Except in the runs #55 and #51b that failed to compute the 20 periods, the
sphere frequency always appears in the wave frequencies (Fig. 4.3.B) with the first
or second highest weight. The value of the harmonic frequency increases from 5
to 1 as Fr increases from '1!6 to 50. Then the value of this harmonic frequency,
after a short stay at ~ 1.15, seems to drop to % and then re-increase but at a
slower rate than in the previous zone.

The fast decay of the weights (Fig. 4.3.C) of both the first and second frquen-
cies reduces the meaning of the values of these frequencies. But we can also
understand this decay as a flater spectrum of the wave frequencies as the Froude
number increases. When the sum of the weights of the two first frequencies be-
comes smaller than 40%, this diffusion of the frequencies is too important to
consider any regular oscillations.
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4.4. Experiments

The experimental setup is descibed in figure 1. The phenomena were recorded on
a video tape from 3 points of view, always in the vertical mid-plane of theside of
the tank. The first view is in the plane of the free surface. The second one is
looking down at the free surface at an angle =~ 30° to the horizontal. The third
one is looking up at the free suface at an angle ~ 15°.

The experiments were made with a ping-pong ball R = } inch. The tank was
square of width equal to 2+ 3 feet and then free surface width =2+12+3R =
T2R. The frequency of the sphere was in the range 2.3Hz to 8Hz. As the free
surface is larger than 60R, the results obtained for the small sphere frequencies
are valid.

The initial depths (non dimensional) studied are 1.8, 1.6, 1.4. 1.2. In the last
experiment, the sphere gets in contact with the air.

The experiments show that as the sphere frequency increases, the amplitude
of the waves decreases. This verifies the global trend of the results obtained in
the series 1.2.

We also noticed, and this may be a consequence of the amplitude decay, that
the perturbed zone around the sphere decreases as the sphere frequency increases.
This phenomena is consistent with the numerical calculations in the series 1.3 and
supports the values selected for the free surface width and the sphere frequency
range for the calculations.
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5. Conclusions

The study shows that, when s sphere is oscillating below the free surface at low
frequencies, the surface tension can be neglected. The average amplitude of the
free surface waves increases with the gravity and a resonance mode may exist.
The average amplitude is also related to the inverse of the the sphere frequency
and the experimental observations validated this important phenomena (relation
to the free surface width and then to the computational time).

The experiments we conducted support the choices we made for the reference
parameters and the experimental observations are consistent with the trends of
average amplitude and average position predicted by the numerical calculations.




6. Appendix A

Figure 3.5.A : Physical definition of the free surface
Figure 3.5.B : Gridding definition
Figure 1 : Experimental setup
Figure 3.7. : Definition of the data analysis
Figure 4.1.2 : Comparison 40/80 panels run #3 & #3b
Figure 4.1.2 : Comparison 40/120 panels run #8 & #8b
Figure I : Datas sheet series I
Figure 4.1.3.A, Abis, Ater : Deformation versus initial depth
Figure 4.1.3.B : Waves frequencies versus initial depth
Figure 4.1.3.C : Weights repartition versus inital depth
Figure 4.1.4.A, Abis : Deformation versus sphere frequency
Figure 4.1.4.B, Bbis : Waves {requencies versus sphere frequency
Figure 4.1.4.C : Weights repartition versus sphere frequency
Figure II : Datas sheet series II
Figure 4.2.A, Abis : Deformation versus Weber number
Figure 4.2.B : Wave: frequencies versus Weber number
Figure 4.2.C : Weights repartition versus Weber number
Figure 4.3.A,Abis : Deformation versus Froude number
Figure 4.3.B, Bbis : Waves frequencies versus Froude number
Figure 4.3.C, Cbis : Weights repartition versus Froude number
Figure 3.7.B : semi 3D visualization : run#3 : reference
Figure 3.7.B : semi 3D visualization : run#54 : reflecting waves
Figure 3.7.B : semi 3D visualization : run#54 : standing waves
Figure 3.7.B : semi 3D visualization : run#3 : reference

7. Appendix B

Fortran code spectral.f : data analysis ( Fourier transformation )
Fortran code smart.f : semi 3D visualization
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The doted lines symbolise the time stepping: large time step when the speed of the nodes
is small; small time step when the speed of the nodes is large.
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Deformation vs Weber ( Fig. 4.2.A)
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Wave frequencies vs Weber ( Fig. 4.2.B)
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Deformation vs Froude ( Fig. 4.3.A)
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Weights vs Froude ( Fig. 4.3.C)
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Tue Oct 26 15:25:25 1993 C:/USER/YANN/SPECTRALF

WO WN -

*program for a spectral analysis of the output of FSURFS
*YG 9/93
L ]

program spectral

implicit none

real z,freq,ampli,ave, freq0

real freqs(100), freqf(100),props(100),propf(100)
real*8 tsonx(16384)

real”*8 sonx(16384),a(10000),b(10000)

real*8 sonx2(16384),a2(10000),b2(10000)

integer i,k,1,kf, ks

integer jnax,ilen,col,ref
character*20,filin, filout

write(*,*)’ Enter the name of the files'
write(*,*)’ Input :'

read (5,'(A)’)filin

write(*,*)’ Output :’

read (5,°’(A)’)filout

*write(*,*)’ Enter the number of records’
*read (5,*)jnax

*write(*,*)’ Enter max fregency’

*read (5,*)ilen

open (unit=1,file=filin,status='o0ld’)
jnax=~1
100continue
read(1l, *,end=1000),2
jnax=jnax+1
goto 100
1000continue
write(*,*)jnax,’ Records’
close(l)

open (unit=1,file=filin,status=‘old’)
do i=1, jnax

read(l, *)tsonx (i), sonx(i), sonx2(i)
enddo
close(l)

ref=tsonx(jnax)+1
ilen=1.5"ref
print*,ilen

call ftrfm(jnax,tsonx,sonx,a,b,ilen)
call ftrfm(jnax, tsonx,sonx2,a2,b2,ilen)

open (unit=2,file=filout,status=‘unknown’)
do i=2,ilen+l
write(2,*)real(i-1),100.*sqrt(a({i)**2+b(i)**2),
$ 100.*sqrt(a2(i)**2+b2(i)**2),xeal(i-1)/real (ref)
write(2,*)real(i-1),0,0,real(i-1)/real (ref)
write(2,*)
enddo
close(2)

call frequency(filout,ilen,1,1.,ks,props, freqgs)
call reorder (props, freqs,ks)

call frequency(filout,ilen,2, freqs(1l),kf, propf, freqf)
call reorder (propf,freqf,kf)

avez=0

do i=1, jnax-1
aveszaves+sonx2(i)*(tsonx{(i+1)~-tsonx(i))

enddo
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73
74
75
76
77
78
79
80
81
82
83
84
8s
86
87
88
a9
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

avesave/ (tsonx(jnax)-tsonx(l))
call getampli(filin, jnax,k,ampli)

write(*,*)’ Pile :’,filin

write(*,*)

write(*,*)kf,’ frequencies for the FS’

do i=1,kt
if (propf(i).gt.propf(1)/20.) then

write(*,*)freqf(i),’ weight = ‘,propf(i)*100.
endif

enddo

write(*,*)

write(*,*)ks,’ frequencies for the sphere’

do i=1,ks
write(*,*)freqs(i)/ref,’ weight = ’,props(i)*100.
enddo
write(*,*)
write(*,*)’ Average position at y :’,ave
write(*,*)’ Amplitud is there :!,ampli
write(*,*)
write(*,*)’ There were about ’,k,’ pseudo-periocds’
write(*,"*)
write(*,*)’ Et voila ptit gars’
end
c (222X 22222 E SRS SIS S RSS2 RS2 2 2R R X R22222 22 2R 2R 2R 2]

c SUBROUTINE TO CALCULATE COEFFICIENTS USING FOURIER TRANSFORM
(o] COEFFICIENTS FIT EQUATION OF THE FORM:
CS(t)=Ao/2 + AnCOS(nwt) + BnSIN(nwt)
C T2 I 2R EZEEE XS PERTIETYRRRZRY RS RSRRR R AR R A X2 22222 XXX 2 X2 2 2 2 )
SUBROUTINE FTRFM(JNAX, TSONX, SONX, A, B, ILEN)
IMPLICIT REAL*8(A-G,0-2)
DIMENSION A(10000),B(10000), TSONX{16384),SONX(16384)
DIMENSION DELT(16384),HTSONX(16384)
DATA PI1/3.14159/
T=TSONX {JNAX)
WMAIN =2.*PI/T
DO 210 J=1,JINAX-1
210DELT(J) =TSONX (J+1) ~TSONX (J)
DU 211 K=1,JNAX
211HTSONX (K) =TSONX (K)
TA=2./T
DO 75 NN=1, ILEN+1
N=NN-1
W=FLOAT (N) *WMAIN
ASUM=0.
BSUM=0.
FCLAST=SONX (1)
FSLAST=0.
DO S0 J=1,JINAX-1
L=J+1
HANGL=W*HTSONX (L)
FCNEXT=SONX (L) *COS (HANGL)
FSNEXT=SONX (L) *SIN (HANGL)
FCOS= ( FCLAST+FCNEXT) /2.
PSIN= (PSLAST+FSNEXT) /2.
FCLASTsFCNEXT
FSLAST=FSNEXT
ASUM=sASUM+ (FCOS*DELT(J) )
BSUMsBSUM+ (FSIN*DELT(J))
50 CONTINUE
A(NN) =TA*ASUM
B (NN) =TA*BSUM
75 CONTINUE
200RETURN
END

P R R R R X X XX R X XY SRS SRR R R A S XX 2222 A2 A A2 2 A2 A2 22 A Al sl

*subroutine to determine the main frequencies of a signal
Q'Qttt.'*"."'.tt"Q"i'.Q.t't...Qt.'*ttt".*tﬁ..t.t'."'t".ti...tt"
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145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
79
@:
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
10
1

2
213
214
215
216

subroutine frequency(tilout,ilen,col, fre, ks,props, fregs)
implicit none

real props{(100),freqs(100),spaa(2),.1ii,aa(2),.mini, fre,tot,alf
integer ilen, i, ks, es,col

character*20,filout

:pon(unitsz.filo-tilout.statu-a'unknoun')
=0
es=]l
tot=0.
read(2,*)ii,spaa(l),spaa(2)
read(2, *)alf
do i=2,ilen
read(2,*)ii,aa(l),aa(2)
read(2,*)alf
if (aa(col).lt.spaa({col)) then
if (es.eqg.l) then
es=-1
ks=ks+1
freqgs(ks)=(ii-1)/fre
props (ks) =spaa(col)
totatot+spaa(col)
endif
else
if (es.eq.-1) then
es=]
mini=spaa(col)
endif
endif
spaa(col)=zaa(col)
enddo
do i=1l,ks
props(i)=propsas(i)/tot
enddo
close(2)
return
end

(A2 222222222222 2222222222222 2222222222222 222X 2222222222222 2222 X}

*subroutine to compute the amplitud of the signal ( average )

\AAAZAAZ S22 AR 222222222 X2 X222 22222 X 22223222 XX YRS R 2 20 R
subroutine getampli(filin, jnax,k,ampli)

implicit none

real ori,son2,son2p,amp(1000),ampli,a

integer k,ev,i, jnax

character*20,£filin

k=0
ev=l

open{unit=l,file=filin, status=‘unknown’)
read(1l,*)a,a,son2p
ori=son2p
do i=2, jnax
read(l, *)a,a,son?
if (son2.gt.son2p) then
if (ev.eq.-1) then
ev=l
kak+l
amp (k) =ori-son2p
ori=zson2p
endif
else
if (ev.eq.l) then
ev=-1
k=k+l
amp (k) =son2-~ori
ori=son2p
endif .
endit
sonip=son2
enddo
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217 close(1l)

218

219 ampli=0.

220 do i=l,k

221 amplizampli+amp(i)/k

222 enddo

223 return

224 end

ggz (A2 A2 A2 T2 A 222 R 22222 22 222 2R R R 2 R R R R R R Y R Y P R R R R R R R 2R L
227 *subroutine to reorder a vectors in a decreasing order and make

228 *the same change in a another vector

229 LA A AR AR 22 22 X222 222X R 2222 R R R 2R 2R R 2 R 2R R R R R R R Y R R R A R AR X I
230 subroutine reorder (propf, freqs,kf)

231 implicit none

232 real propf(l:1),freqs(l:1),p,.f

233 integer kf,i,j

234

235 do i=2,kt

236 p=propf (i)
237 f=fregs(i)
238 do j=i-1,1,-1

239 if (propf(j).ge.p) goto 10
240 propf(j+1)=propf(j)
241 freqs(j+l)=freqs(j)

242 enddo

243 j=0

244 10 propf({j+1l)=p
245 freqs(j+1)=f
246 enddo

247 return

248 end

249

250 *

251 *

252 *well, now it’s done ! Shall I have a fag ?
253 *

254 *

255




Tue Oct 26 15:24:47 1993

b et s o
VAW HOWOVEVINAWNEWNH

-
T REYS

[SESESY NSNS
(RN SE -]

WWWWWWWwWwWwwdhdNN D
VONATMNMBdWNFROWVOIANAN

o e P
WO

L ol ol
U-X. RSN RV ]

unun
WO

oIty
SWNFHFOWVONAAND

NN
own

-3 OV
QOU®m-

71
72

C:/USER'YANN/SMART.F

L ]

*The front-cover of ’‘3rd days of hydrodynamic’
*give me an idea I gonna try to adapt to my case
*YG 10/93

program smart

implicit none

real a,b({5000,140),c(5000,140),var, cor,alt
integer i, j,numb, first,nod, maxi
character*20,£filin, filout, filopti

write(*,*)’ Enter the name of the files’
write(*,*)’' Input :°

read (S,’(A)’)filin

write(*,*)’ Enter the number of nodes’
read (S, *)nod

write(*,*)’ Output : 2d type’

read (S, *(A)’')filout

write(*,*)’' Output : optical type’

read (5,’'(A)’)filopti

maxi=0

open (unit=1,file=filin,status=‘o0ld’)

100continue
read(l, *,end=1000)alf
maxi=maxi+l

goto 100

1000continue

close(1)

maxiz=maxi/nod

write(*,*)’' Enter the number of sequences’
write(*,*)’' Maximum = ’,maxi

read (5, *)numb

write(*,*)’ Enter the number of the first sequence’
read(S,*)first

write(*,*)’ Enter the x correction ( indice )°’
read (5, *)cor

open (unit=z=1l,file=filin,status='o0ld’)
open (unit=2,file=filout,status=‘unknown’)
do i=1,first-1
do j=1,nod
read (1, *)alf
enddo
enddo
do j=1,numb-first
read(l,*)a,b(j,1),c(j,1)
var=(a-alf)
b(j,1)=b(j,1)~var*cor
c(j,1)=c(3,1)-var
writo(z ')b(j 1),¢(3,1)
do i=2,nod-11
read (1,*)a,b(j,i),c(3,1)
b(i,i)=b(j.i)-vat*cor
c(j,i)=¢c(j,i)~var
write(2,*)b(j,1),c(3,1)
enddo
write(2,*)
do i=1,11
read(l,*)a
enddo
enddo
close(l)
close(2)

open (unit=3,file=filopti,status='unknown’)
do i=1,nocd-11

do j=1,numb-first
write(3,*)b(j,1).c(3.1)

enddo

write(3,*)
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73 enddo
74 close(3)
75

76 write(*,*)’ Et voila ptit gars’
77 end
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Introduction

The study of free surfaces can be interesting in many respects. Any surface sepa-
rating a liquid from a gaz could be called a free surface, though for a finite volume
of gaz in a liquid, the term bubble is certainly more accurate. The typical example
of free surface is the surface of the ocean.

When a free surface presents a deformation in one special direction, the stream
of liquid created is called a jet. Jets have been used since earliest times and their
behavior has been studied by scientists since the 16th century at least. Recently,
studies on jets have shown new possible applications, especially since it has been
discovered that they were involved in cavitation phenomena.

Simple steady jets have be studied analytically. One of the oldest hydraulic
problems has been the determination of the discharge rate and contraction coeffi-
cient of an orifice.

With the advent of new computational tools, further research in the under-
standing of jets has become possible.

In this report, we present the continuation of a numerical study of a selected
example of axisymetric free surface which leads to the formation of a high speed jet
on the axis. The problem concerns the modelisation of the motion of an air/water
free surface created by suddenly lifting an initially empty cylinder in a tank filled
with water.

The method used to solve Laplace eqnation is the Boundary Element Method,
for which a fortran code (2DynaF$§) had already been tested by DYNAFLOW,
INc.

Different hypothesis were made about the general boundary shape to be mod-
elled and about the initial conditions to be imposed at the free surface. First,
we shall report results obtained ignoring the part of the free surface located out-
side the cylinder, with a fixed cylinder in an infinite medium and when the liquid
initially forming a flat free surface at the cylinder bottom is suddenly allowed to
enter the cylinder. In fact, the modelisation of these much simpler cases turned
out to be necessary to test the reliability of our code. Then we shall present our
conclusions on a more physical modelisation, taking into account the presence of
the tank below the cylinder and the whole free surface. Neverthless, we will keep
for a future study the case of a moving cylinder.

Computational schemes were introduced to speed up the code or to produce
a better modelisation of the physical problem. They are also reported in the
following sections.




1 Problem formulation

1.1 Description of the physical phenomenon studied

The problem consists in modeling the free surface created by lifting a cylinder
initially empty, opened at its bottom, and immerged in a tank of water. The
problem is assumed to be axisymetric. We distinguish two free surfaces, the first
one being limited by the interior surface of the cylinder, the second being limited
by both the outward surface of the cylinder and the sides of the tank.

1.2 Results from previous studies

The following phenomena had been both studied numerically and observed exper-
imentally.

1.2.1 Report from previous numerical study

The rise of liquid in the cylinder has been reported in DYNAFLOW’s Bertin report
[7] as sequenced into five different phases:

- A first phase where two water fronts converge simultaneously toward the axis
of the cylinder from all around the cylinder

- Then, a possibility of capture of an air-bubble as the water fronts reach the
axis in a violent impact

- Creation of an ultra-thin jet on the axis of the cylinder

- The rest of the free surface follows the ultra-thin jet while the jet itself can
rise up to several times the initial depth of water in the tank

- The water touchs the cylinder sides. Oscillations start in the cylinder.




1.2.2 Report from previous experimental studies

Experiments have been carried out at DYNAFLOW using different depths of water
and different ways to rise the cylinder. Experimental observations were made
possible by using a high speed camera. They showed that the region of high
velocity is localised in the vicinity of the bottom of the cylinder and inside the
cylinder while the second free surface apparently did not move (the shape remains
flat), velocities involved in that area being quantitatively small, except for the fluid
displaced by the motion of the cylinder.

1.3 Behaviour of the fluid
1.3.1 Hypothesis

Reynolds numbers in the studied phenomenon are supposed to be large enough so
that viscosity effects can be neglected in the equations of the fluid. The fluid is
considered irrotationnal. The study will be restricted to cases where flow velocities
remain small ~ompared to the speed of sound in water. As a result, compressibility
effects are also neglected.

The two previous assumptions lead us to consider a potential flow which follows
Laplace’s equation in the whole domain ) considered :

V23 = 0 where ® is the potential for velocity U = V&

and where ® = ®(r, z) since the problem is axisymetric

1.3.2 Equation of motion

The equation of motion is :

dv
P = ~V(p+ pg2)

The assumptions made above make it possible to re-write the equation of mo-
tion as Bernoulli’s equation :

aa? +=+- £ + gz = Constant (1)

1.3.3 Surface tension

Surface tension has to be taken into account, especially in the vicinity of the axis
of the cylinder where the formation of the jet leads to high curvatures. To the
contrary, surface tension effects are negligeable away from the axis and on the
second free surface.



Given the atmospheric pressure P, .., the pressure inside the liquid at the
free surface is :
Ppivid = Patmoe. +0C (2)

where C is the local curvature of the free surface.

1.3.4 Boundary conditions

Since the phenomenon we want to study first is localised near the cylinder, and
since it appears to be of less interest to know the velocity field in the vicinity of
the sides of the tank, we decided to consider the dimensions of the tank as infinite.
Therefore, the domain  considered for the fluid is limited by the cylinder itself
and the free surface initially at the bottom, the second free surface outside of the
cylinder, and a wall representing the bottom of the tank. At infinity, we assume
that <I’ =0 and at least that re ® is limited.

We shall then keep in mind for the future the hypothesis :

® — 0 at least like A where A is a constant. 3)
=00 r




2 Numerical resolution

2.1 The Boundary Element Method

The method used to determine the time evolution of the free surface is the Bound-
ary Element Method. This method uses Green’s identity to solve Laplace’s equa-
tion. We shall sum up the main ideas of the method for an axisymetric potential
problem in the following lines. For futher details, the reader may refer to [5] and
[4].

Let us take &(z,y,z) regular enough and let us suppose V2® = 0. Let us
take ¥, another function of space supposed to be C* in the considered domain 0
limited by the surface S(Q).

Green’s formula gives us a first equation

/v%wn_-jwvwn+/—-ws 0

A second integration using the same identity gives

g:’ws /o dS+/<I>V’\I'dﬂ 0

This equation remains true in the case where & and ¥ are less regular, as long
as the above integrals exists. As a consequence, if p(z,,¥p,2,) and ¢(z,y,z) are
points inside Q2 or on the Boundary S, we may take for ¥ the expression

1 1
2=z +(y—w)? +(z— 51 lp—dl
Several cases are now to be distinguished:

-p is inside  :
We know that V?,(ply) = —4x§, which means

¥(q) =

21 _  te
/n Vilp—g) ¥4 =~ /n 476,.9(q).d0Y, = —dxd(p).

-p is a regular point on the boundary S :
we have V3 (lo) = —2x6, then

1
/n Vil 8a)dft, = ~2rd(p)

-p is an angular point on the boundary S :
we have V(1) = —c(p).8, where ¢(p) is the solid angle from which p sees

1, and

/ Vi) 2(0)4% = ~clp)-2(p)




If we only consider regular surfaces in our following study, which seems an
understandable hypothesis for a physical surface defined by the motion of a fluid,
we therefore come to the following identity :

c(p)-8(p) + [s B(a)- = 5iq-4Se = [5 52(9)-5iq-95% )
c(p) = 4~ if p belongs to N and ¢(p) = 2« if p belongs to the boundary S

The advantage of this integral representation is that it effectively reduces the
dimension of the problem by one. If the field point p is selected to be inside the
fluid domain 2, knowing ¢ and %% on the boundary S appears to be enough to
determine ® everywhere else. If the field point p is selected on the boundary S,
(4) gives a relation between ® and ‘” on the boundary S. After dxscretlsatxon
of this boundary (4) gives in fact a system of equations relating ® and at the
nodes of the selected discretisation.

The Boundary Element Method in the case of a potential problem consists
in solving this system of equations. Major benefit is due to this formulation,
especially since it does not necessitate an heavy discretisation of the whole 3D-
domain .

In axisymetric problems, the integrals in (4) can be re-written in the following
expression where I' stands for the trace of the boundary S in a meridional plane:

* 9 1 ad i 1
c(p).Q(p)+£_¢(q).r,dr,..[) a—n'mdo' = /r-a_n(q)'r'dr”/o 'p__ql'do' 25())
since ®(q) and 2¥(q) do not depend on the #—coordinate of point q.

Let us set
p = (ro,0, 2o)
q= (1‘, 0’ z)
4r(e)ro
E(e) =
= O+ + @ =P

Where { :23 } is a given parametrisation for I'. As reported in [6], it is possible

to use the complete integral of the first kind K(k) and the complete integral of the
second kind E(k) to rewrite (5) since we have for any surface S :

/ 1 s /1“ ar(e) [(%)* + (£)7] K(k)*
Ip =4l [(r(e) + r0)? + (2(e) - z0)’]

and
— de.r(c)
s su(g)dS = ~41 (r(Q+rgP+s(a-n))
{[£(r(€) + ro) = $£(2(6) = 20) — g ero] 120 + phy raK ()}

7




Expressions of E(k) and K(k) were not necessary to reprogram since we used
a previous axisymetric code in which the corresponding subroutine had already
been made and tested by DYNAFLOW. They are available in (8].

After discretisation of the only I section, it is possible to perform the integra-
tion of the above cxpressions so that (5) becomes of the form

ZB:;Q +2x9; = EA:](an),

which can again be rewntten as
.. .., 00
Z Bij.%; = E At].(b;)j (6)
i i

by including the 27 term in the matrix Bij. The expressions of the elements of
A;; and B;; are obtained after integration over a panel, here performed using a
Gaussian quadrature.

2.2 Application to our problem
2.2.1 Case of the cylinder in an infinite medium

The previous 2DynaFS code developped by DYNAFLOW would consider close
surfaces such as bubbles in an infinite domain of fluid. In this case, the T figure
which needs to be discretised is just a cross-section of the bubble, the contribution
of the surface at infinity being zero according to our hypothesis (3). For a bubble,
the Boundary Element Method assume that we know ® on the surface of the
bubble at each step, so that we can compute ® by solving system (6).

For the problem of the cylinder, our first studxa considered also a closed surface
in an infinite domain of water to modelise the rise of the water in the cylinder. That
solution turned out to be the easiest way to re-use the already existing 2DynaF$S
code with few modifications. A part of that surface is representing the free surface
itself, another part is representing the sides and a fictitious top for the cylinder as
shown below in figure 1. The introduction of that fictitious top has been necessary
to close the surface S.
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The above figure 1 suppose that the bottom of the tank is far enough from the
cylinder so that it can be neglected.
On the sides and on the top of the cylinder, the fluid being inviscid, we have

g%)cﬂ =0 (M

As a consequence, system (6) has been re-written in order to have on one side

32 on free sux:faoe ) and on the other side the unknown
%~ = 0 on cylinder

2% on free surface
® on cylinder
Consequently, if system (6) is equivalent to

Bl;; B3; ] [ ®;l,, ] Al; A3 ] [ glh ] (8)

the known quantities

variables

B2; B4 Jle.c A2;; A4y gl =0
we may replace it by
Al"j. _B3,, B1;; 0 Q,'I!. )
A2; -B4., o, | eyt B%; 0 0

The above system is solved using a L-U decomposition.

2.2.2 Case of a cylinder near a bottom wall

In the case where we want to consider a small distance between the cylinder and
the bottom of the tank, we decide to keep from the tank only the bottom part
which appears as an infinite wall, as said before. The correspondant figure is the
above figure 2.




The problem is to find a potential ® with given values on the free surface such
as before, which still satisfies Laplace's equation in the domain above the wall and

satisfies the extra boundary condition:

9%

)uu 0

We use here the well-known method of the image. By cousidering an identical
twin system located symmetrically to the wall, with the same boundary conditions
(same ® on the image free surface and (g) = 0 on the sides of the image cylin-
der), we create another problem whose solution is identical to the solution of our
problem. If we use 1 as the indice for the upper (real) system and 2 for the lower
(image) system, previous equation (4) remains unchanged as long as we note:

We then have

pe, cp).()+ [ #(0)5;

/) 1
+ L ‘I’(Q)-"a';(m)-dsu

S=
Q=

System (8) has to be replaced by:

Bl.‘,’
B2;;
B3ij
B4ij

Al
A2
Alij
Adij

And (9) becomes

Al;;
A2;;
A3;;
A4;;

- B5;;
- B6,;
-BT7;;
—B8;;
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Like previously, our system could be solved using a L-U decomposition of ma-
trix (M). Nevertheless, our problem has in addition the following symmetries:

se| _ o0
nlsa Hlm

‘I’i‘evl. =& Icv‘:

The system may then be reduced before being solved in a system of the same size
as (9), by adding columns (m — j) of matrix (M) to columns j ( where m is the
size of matrix M) and by keeping only the first resulting quarter of the matrix so
as to obtain:

29 ilyn
cr; ¢35 ][ 8. 1_[B1 0 0 By 0
02.'_,' C4.~,‘ (bjlj” B?g,‘ 00 362.',' (:
-7!0:

What remains to be solved takes therefore about the same time as in the
previous casc without the wall. In practice, it turned out that cases with a wall
ran much slower than without. It must not be forgotten that the above reduction
supposes known expression (11) and that consequently the integration has to be
performed on all the panels (image included).

Nevertheless, two remarks can be made:

- firstly, by symmetry, the influence of the panel(z) of the object system on the
panel(j) of the image system is identical to the influence of the panel(z) of the
image system on the panel(j) of the object system. Therefore, we do not need to
complete (2NV)? integrations but only 2N3.

- secondly, another way to say the same thing would be to notice than since
the potential ® and its normal derivative %:- are identical on the image and on the
object, (10) can be re-written as:

PR, dp)8(o)+ ¥0)g (ot ez o[ (o) e (#(a)) s =0

where § stands for the the image of ¢. The above expression halves too the
integration work (N? bigger integrations and equivallent to 2N? are needed) and
gives directly a reduced system between ® and %3,; It enables a discretisation on
a cross-section I only (and not its image) which reduces the memory space used.
These remarks have unfortunately not yet been exploited in the code.

2.2.3 Case of a second free surface outside the cylinder

We have also developped a code to take into account the second free surface,
outside the cylinder. The presence of the wall is treated the same way as before
and will not be re-explained here.

The corresponding figure is figure 3.
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If we call fs; and fs;r the two free surfaces considered, and their possible
images fsrz and fsyp3, system (9) is, in the case there is no wall, replaced by

A2;; —BS5;; A8 Qlc,‘ B2; 0 BS;; 0

[,«u.-,. _P4, A7.-,-] 2, [31.-,- 0 37.-,-] [ ¢|,,,]
A3, —B6;; A9 %lhn B3;; 0 B9 Qll'"

and by a similar expression four times bigger if there is a wall (but it can be
reduced after the integration had been made on all the panels, image included, as
said previously, and by the same method). The system is then solved as before
to get the normal velocity on the two free surfaces and the potential on the rigid
boundary. '

2.3 Time stepping

The previous sections have shown how Laplace’s equation was solved at a given
time. To determine the evolution of the shape of the free surface(s), it is necessary
to introduce a time discretisation and to give a speed for each node of the dis-
cretisation. Given the solution to the Laplace’s problem at a time ¢, time stepping
operations consist in defining new positions for the nodes and new boundary con-
ditions at a later time in order to prepare the next resolution of Lapace’s problem.

2.3.1 For the cylinder

For the cylinder, time stepping operations are very simple. The boundary condi-
tions used to solved Laplace’s equation are always the same. As said before in (7),
these conditions require that the normal velocity be zero near the cylinder.

12




In the case of a fixed cylinder, the nodes remain unchanged during the whole
evolution if the second free surface is not taken into account. Otherwise, nodes
are equally redistributed at each time step according to the new position given to
the first node of the second free surface. The node located at the bottom of the
cylinder does not move.

In case of a moving cylinder, we could define the movement of the nodes ac-
cording to a supposedly given displacement of the cylinder, and following here
again a regular distribution as it has been done in previous Bertin’s study (7).

2.3.2 For the nodes on the free surface

The method used is the same for both free surfaces described in the previous
section. At each time step, after system (6) or an equivallent system is solved
for time ¢, we know %(t) on each panel of discretisation. In addition, we can
differentiate the potential and compute %?(t) if we first calculate the length of
each panel. We therefore come to know the two components of the velocity V.(t)
and V,(t) on each panel, and on each node by interpolation. Consequently, we can
set a new position for each node using the Adams-Bashforth method of second
order:

X(t + dtnew) = X (1) + (dtnew + Spam) # V(t) — Sem x V(¢ ~ dtoia)

Y] 2 12
Y(t + dinew) = Y(t) + (dtpew + %:::) * V,(t) - %‘-:; * V,(t — dtod) (12)

To use the above expression, it is necessary to explain how to define din.y
and dt,;. We could have set once for all dt to a very small numerical value and
use dine, = diyq = dt in (12). Nevertheless, the velocity field present in the
fluid changes with time, especially in a problem where a high speed jet is created.
A constant dt for time stepping would either mean very large computation time
by choosing a small d¢, acceptable for any range of speed encountered, or give
wrong results if the selected dt is too large. Consequently, an adaptative time
discretisation was used, by calculating at each time step the maximun velocity V,,
reached on the nodes and by adapting dt relatively to that velocity. At each step,
dtoa is given the former value of dt,.., and dt,.., is re-set according to the following
expression:

_ dphimax
T 1+V3
where dphi ., is a selected parameter to measure the quality of time discretisation.

For the free surface(s), the boundary condition needed to solve Laplace’s equa-
tion at time ¢ + dtp.,, is the potential $(t + dinew). Bernoulli’s equation (1) can

dtpew

then be used: 96 U P
-a—t+—2- +-p'+gz=Consta.nt
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and transformed using expression (2) for the pressure at the free surface:

ae  U?
737+T+dc+gz—gﬂ

if we suppose that the fluid is motionless at infinity where z = H and % =0.
We also have:

dd 0o ——t o0
S0 =220 + T, (Va) () = 5 (0 + V()
Consequently, we obtain the following expression:

dd U?
< &) =5 () +[g(H — 2)](2) - oC(t) (13)
This can be used to define the new value of ® using again the Adams-Bashforth
method:

dt,zm, dd dt,zm, dd
2dt°¢¢) * dt (t) - 2dt o4 * dt (t - dtd‘) (14)

O(t + dtnew) = B(t) + (dtnew +

2.4 Summary and flowchart

Let us summarize now the previous statements:

- We suppose that we know ® on the free surface at the beginning time ¢o (In
practice, we took zero for the initial potential on the free surface). We also know
the shape of the free surface and that the normal condition (7) is satisfied on the
cylinder.

- We compute using Green’s Identity the value of 42(¢o) at the same time .

- We deduce the velocity on the boundary S.

- We define dt,.,, relatively to the maximum velocity found on the free sur-
face(s).

- We can set the new values of X(ty + dtnew) and Y (2 + dinew) at each node
using the Adams-Bashforth method.

- We use (13) and (14) to define ¥(tg + dinew) at each node.

- We are ready to start another iteration at time g + dinew-

A more detailed flowchart of the last version of the code used is given in figures
[2.4.0] and followings [2.4.1] to [2.4.9]. [2.4.0] takes into account other computa-
tional tools that will be seen in the following sections.

2.5 General assumptions made in the study
2.5.1 Assumptions

The thickness of the cylinder has been neglected.
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The problem of the shape to be given imitially to the free surface remains
unsolved. Therefore, in most cases, it was considered an initially flat free surface
inside the cylinder. The initial conditions corresponding to such a hypothesis were
unfortunately unknown too. Consequently, as said before, we took ® = 0 on the
initial free surface for the first time step which corresponds to assuning that all
the fluid is motionless when we start.

2.5.2 Notations

We haved used the following physical parameters in our study :

H:depth of water
R: radius of the cylinder
®(r, z): velocity potential
l: height of the cylinder
d: distance between the cylinder and the wall
o: surface tension parameter
p: density of water

g: gravity
2.5.3 Non-dimentionalisation

We use H as the parameter to non-dimentionalise distances so that :

1 d
T H T H
‘V/V;;_sct to 1 the value of gravity which is equivalent to non-dimentionalise times
by /£.
9

d=

Pressures do not need to be non-dimentionalised since they do not appear in
equation (13).




3 Test of the reliability of the code

3.1 Necessity of the ’Regridder’

When the shape of the free surface changes, the geometrical repartition of the
nodes changes too and may become uneven after a certain number of iterations.
The purpose of a ‘Regridder’ is to prevent such an uneven distribution by a regular
re-distribution of the position of the nodes after a certain number of time steps.
First, it appears to be necessary to define a curvilinear abscissa s on the cross-
section I'. Then the length of the free surface is divided equally into the number
of panels to assign a new curvilinear abscissa for each node. Finally, for each
node, the value of X,Y, ®, %‘-:—, Ve, V, is re-set using a cubic interpolation of the
corresponding function of s.

It is possible not to divide equally the length of the free surface in order to
emphasize the accuracy and precision of the discretisation in a certain region of
the free surface. In the case of the present problem, the axis of symmetry is very
important since it is the location of the jet and the region of the highest velocities.
So, it was decided to emphasize that region by subdividing the total free surface
length according to the following distribution:

5(3) = $(Nbnot) gy )" (15)

where ¢ is an indice for the nodes, starting at the axis, Nbnodes the number of nodes
on the free surface, and a a real parameter.

Results showed that this ‘regridding’ subroutine do not modify too much com-
putation times. Consequently, it was used at each time step. To prevent a loss
of information on the regions away from the axis of symmetry, the concentration
procedure corresponding to (15) has been used only every other step (staggered
regridding). Otherwise, we kept a linear re-distribution (a = 1).

The differences introduced by the 'Regridder’ appeared to be significant as is
shown in figures [3.1.1],(3.1.2],(3.1.3].[3.1.3] shows that without ’Regridder’, the
computation is stopped very soon because the nodes are not equally distributed.
We can see the formation of two numerical instabilities, near the sides of the
cylinder. These instabilities are removed thanks to the ‘Regridder’ on figures
{3.1.1},[3.1.2).[3.1.1] is a case of ‘staggered regridding’ and proves to be a better
way of ‘regridding’ than [3.1.2], a case of linear regridding.

Different values of a were tried after we decided to use a ‘staggered regridding’.

First we took a = 2 like on [3.1.1] and theu o was reduced to 1.1, because it
turned out that the nodes were too concentrated on axis with @ = 2, especially
after a great number of time steps as it is shown on figure [3.1.4].

Finally, we choose not to use any linear re-distribution but a two stage ‘Re-
gridding’, using alternatively @ = 0.9 and o = 1.1 and a good space discretisation.
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In fact, it would have been very interesting if we could have replaced a good dis-
cretisation by a concentration of panels on the axis. But as said before, it had not
been possible to do so because of problems at the end of computation as seen on
[3.1.4].

Other different ways of regridding were also tested, such as a three stage ‘Re-
gridder’, concentrating the panels on axis, then on the other extremity, and finally
without concentrating any region (linear distribution). They did not give a better
smoothing of the shape than the previous one, with the same number of panels.

3.2 Convergence Study on the number of panels and on
time discretisation (without averaging)

After having selected a good regridding option, the first studies carried out on the
code were directed to demonstrate that we had a convergence of the results on the
number of panels and on time discretisation. We did not take into account the
presence of the wall nor did we average here. Similar results obtained using an
average procedure will be presented in the next section.

3.2.1 Effect of the discretisation on the free surface

Results are shown on figures [3.2.1.1] and [3.2.1.2]. As one can see, the position
of the first node in time converges to a limit position when the number of panels
increases from 14 to 40. The same observation can be made for the velocity of the

first node.

3.2.2 Effect of the discretisation on the cylinder

Results are shown on figures [3.2.2.1], [3.2.2.2] and [3.2.2.3]. Here again, the con-
sistency of the code turned out to be very satisfying and one can observe that
both figures corresponding to the first node position and the first node velocity
converges when the number of panels is increased from 6 to 20.

3.2.3 Effect of time discretisation

One free surface Figures [3.2.3.1] and [3.2.3.2] show respectively the position
of the first node and the position of a point located at absciss 0.2 m for different
values of time discretisation, by using a height 1=4m for the cylinder. We notice
that the convergence is quite good for the beginning of computation (before 0.3
second). We also present on the same figures (doted line) the case where the height
of the cylinder is increased to 6 meters.

After 0.3 second, the convergence is not satisfying at all. Especially, the fact
that the two drawings corresponding to dphi=0.008 are so different proves that
the height of the cylinder is very important. In fact, what we observe at this time
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is mostly the influence of the top of the cylinder, obviously less important when
the height of the cylinder is 6 meters. That is why it is observed that the jet
rises more slowly for a height of 4 meters than for 6 meters. Not satisfied with
these results, two possibilities were offered to us. Either we would increase the
height of the cylinder to 6 meters and re-do the same study, or we would test
the convergence on time discretisation taking into account the two free surfaces to
remove the problems created by the top of the cylinder. We decided to focus on
that second possibility.

Two free surface The study was carried out with the same parameters as
previously. Results are shown on figures [3.2.3.3] and [3.2.3.4). This time, the
convergence is better, even if computation was not made last as long as before.
Hardly any differences can be seen between the different cases of time discretisation
tested before 0.6 second for the position of the first node.

3.2.4 Interpretation-Conclusion

The tests made above were very important. They proved the reliability of the code
and gave an idea of the level of discretisation to be used for real studies.

A last remark must be made about the above convergence study on discreti-
sation (time and panels). We have shown that a quite satisfying convergence was
observed for the position of the top node, for its velocity and for the position of
a node at absciss =0.2m. That does not really prove that the whole shape con-
verges so fast. An illustration is given with figures [3.2.4.1] and [3.2.4.2], which
present a case made taking into account two free surfaces, and using a good space
discretisation. Even if we had previously observed that the position of the first
node was unchanged for dphi=0.008 and dphi=0.005, the corresponding shapes
are different. Since the drops observed on [3.2.4.1] are removed with a better time
discretisation on [3.2.4.2], they are probably not real, as we first thought they
were. Figures [3.2.4.3] and (3.2.4.4] prove that time discretisation must also be
adapted to the physical problem, and to the order magnitude of the velocities
encountered. They represent the shape of the free surface at the beginning of the
computation, with a unsually large depth of water (2m). The higher velocities
involved make the computation stop in [3.2.4.3] (dphi=0.008), while it goes on for
[3.2.4.4] (dphi=0.004)

3.3 Effects of averaging

Some numerical instabilities or perturbations can appear during the evolution of
the free surface, and grow uncontrolled by the code, while in reality perturbations
are smoothed and controlled by fluid viscosity. As a result, some very high speed
non-physical velocities (100 m/s for instance) were sometimes encountered during
computation. This is due to our modelisation which supposes the fluid to be
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ideal. To prevent the formation of these instabilities, the option of averaging was
made possible. An average parameter N,,, was used with different values, and
corresponds to the following expression:

e Nnn +2 '

where ¢(i) is any quantity depending on the node indice.

First, we applied the averaging to the coordinates and to the velocity potential,
but it turned out that the code was not consistant in this case and that this
method was not necessary for computation. We went on with averaging only on
the velocity potential.. Effect are shown on figures [3.3.1] to [3.3.4]. On these
figures, the attention is laid on the fact that each drawing corresponds to the
shape of the free surface at a time, without any similarity of time between figures.
They are just shown to give an idea of the general evolution of the shape in each
case. Figures [3.3.5] and [3.3.6] show the position in time of the first node and the
position of a node at absciss=0.2 m.

It is clear that even a large number of N,,, (like 100 for instance) might be
dangerous and smooth the shape too much. Another important remark is that
average effects depend strongly on time discretisation as it is proved by figures
[3.3.7] to [3.3.11]. These represent a comparison of the shape of the free surface
when the parameter for time discretisation varies from 0.03 (bad) to 0.002 (good).
A good time discretisation means a lot of time steps and a lot of averaging (and
therefore loss of information) per unit of time. That is why it has been observed
that a better time discretisation gave worse results than a coarse one when
using averaging. The parameter for average is the same in the five figures (3.3.7]
to [3.3.11] : N,y = 100. As one can see, the jet is killed by using a good time
discretisation and undirectly averaging so much that the shape is flatened on the
axis (figures {3.3.11] and {3.3.12]).

Nevertheless, as different as figures [3.3.1] to [3.3.1] and [3.3.7] to [3.3.11] may
look, it has been observed that they were very similar except for the region were
the jet is localised. If we consider, for instance, the vertical position of a point
located at half the radius of the cylinder from the axis, for different parameters
N,y = 30,100, 300, and oo (no average), keeping constant the time discretisation,
the corresponding figures are very similar as shown in figure (3.3.6]. The same
observation can be made by keeping the same average parameter (N,,, = 100)
and by changing time discretisation (figure [3.3.13]).

3.4 Effects of surface tension

Surface tension was introduced in this study since it was not present in the pre-
vious code used by DYNAFLOW in [7] and Bernoulli equation was replaced by the
expression (13) as seen before . The curvature C is computed by calculating for
each node the coordinates of the center of the circle going through this node and its
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two neighbour nodes. As a general rule, tested cases turned out not to depend on
whether surface tension was taken into account or not for the physical value of the
o parameter for an air-water surface (see figure [3.4]). But, it is to be noticed that
this is probably normal since our results never showed especially high curvatures,
except may be on the axis.

3.5 Introduction of a numerical viscosity

To stabilize the computation when numerical instabilities would occur, especially
on the axis, in the area of the jet, an artificial numerical viscosity scheme was
implemented. The purpose of this research was to take into account as many
terms as possible from the Navier-Stokes equations by changing the time stepping
expression (13). We report here the main ideas.

The Navier-Stokes equation of motion is:

% = ——V(p +pg2) + V(MivT') + 2div(ugd)

withd = }(VT +(VT).
We still neglect the fluid compressibility effects (divv = 0) and we keep

rotU = 0. That means that we keep the a.ssumptlon of a velocity potential
in presence of viscous effects. As a consequence, p is still supposed constant and:

= =5t tTJ’A't7+V(—) = aU +V(—) =—V(—+9z)+2dw(u2’)

where n is the normal vector as shown in the scheme below:
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we should therefore find an evaluation of (d.n).n . In the code, we compute
the vector n normal to the boundary which can be expressed in the cylindrical
coordinates system (z;, €;) as:

- —
n=ae +fe; .. 2. m
t =
2= B —at witha*+8°=1
where a and g are known. We also have:

3 M HE +%",‘)

0
15+ 5) 0 %‘-.‘

in,
]

Ou Ou Ou
= a3t o A Wihudhad. 3L
(dn)n=«a 5 -!-2«:3(8z + 5 )+ 8 D
Let us compute 7—’, 2.

0 0%
=28~ To(~a)

e 59 2, 8’6 8’9 00 g, 8%, 0a
7 =g a5t 5 (5~ 5 (5
Consequently, we get
_ o2 9 3d 8% ,08 _8_0 gg
@'ﬂ)-ﬂ- %) + ord + 923 -0—"(-8.;) - ( )

@na=-22-18 .y %) v
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Finally, since 3 = f¢; — a¢; = £¢ + £, we have:

dad U? u, 0*® &z 1 d&r
@ =g et T ) )

The above expression does not depend on the orientation chosen for the normal
vector, and remains correct for all types of geometry. It was used in the code
instead of (13) after the second derivatives ﬁ and %} have been computed. The
quantity £ has been non-dimentionalized as:

8

.d
H./gH
The results were not actually satisfactory and the expected smoothing effects were
not obtained for a physical value of the viscosity parameter u. Results are shown on
figure [3.5]. As one can see, no difference has been observed with and without using
an artificial viscosity as long as we kept g = 10~3kg.m~1.s~! which correspond to
the real value. For larger values of yu, a difference has been observed, but not in
the right direction. On the opposite, the jet appeared more prononced and with a
faster velocity field for 4 = 10-2kg.m~'.s~! than for g = 10~3kg.m1.s~1,

We were unfortunately unable to understand the reason of such results, except
that such an artificial implementation of viscosity may not be compatible with a
potential modelisation.

B
P

3.6 Adaptative space discretisation

In order to reduce computation times while improving accuracy, the idea of an
adaptative space discretisation was introduced. It turned out to be easy to add
to the code since the distribution of panels was already changed regularly with
the ‘Regridder’ subroutine. As the length of the free surface changes, we adapt
the number of panels proportionaly in order to gain time at the beginning of
computation when that length is small. It was necessary to define a maximun
number of nodes accepted, to keep the discretisation inside an acceptable range of
values. The results were not very encouraging since they were in most cases the
same as those obtained with an intermediate constant space discretisation nearly
equivalent to the worse one in the sellected range.

3.7 Conclusions

Best results were obtained using:

- a staggered regridding using both @ = 1.1 and a = 0.9 with the previous
notations.

- no averaging. If averaging is necessary (for instance to go on the computation
after the jet as become very thin), an average parameter of 500 is acceptable.
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- no adaptative space discretisation, but as good a discretisation as possible
(up to 100 pancls was possible for the entire discretisation).

- results were independent of whether surface tension and numerical viscosity
were considered or not.

The following observations can be helpful for the future studies:

- The code is very sensible to time discretisation. Dphi=0.02 is usually too
coarse. Changing for a better time discretisation is often the solution to remove
numerical instabilities which stop the computation.

- The space discretisation must be adapted to the physical problem. If the
important region is the jet, concentrating the panels on the jet is a necessity.

- In our problem, the bottom of the cylinder was more important than the top.
Concentrating at the bottom has improved the quality of the results.

- Space and time discretisation must be adapted together. We have observed,
for instance, instabilities for 50 panels on FS with dphi=0.02, and no problem
for 24 panels with dphi=0.02. This is because dphi=0.02 is too coarse, and some
nodes would touch each other with 50 panels and not 24.

- Averaging should be used if necessary only, relatively to time discretisation.

- In case the liquid has a deformation in one special direction, scaling problems
must be looked at seriously.




4 Results

4.1 Analytical approach

It is possible to get an idea of the velocity fields involved in our problem by trying
to find an analytical solution of a much simpler problem. Keeping to the case
where the bottom of the tank is far away from the cylinder so that it can be
neglected, and also supposing the cylinder to be rigidly fixed, a solution can be
easily found if we assume that the whole free surface rises with the same speed so
as to remain flat all the time.

If Z(t) is the vertical position of the free surface, and v(t) its vertical speed
(supposed uniform), the potential is at each time:

o(z,y,2,t) = v(t).z
Bernoulli’s equation gives us the equation of motion of the free surface very

easily and we have:
& Z 1 dZ

2
dt’ +3 ( ) +9Z=gH
Non-dimentionalised as before, it beoomes.
&
SHe+ ( )’ =1-z (16)
We must notice that no solution satxsﬁes both (as it is in reality):
£(t=0=0
z(t=0)=0 (17)

We set k(z) = (4)? so that (16) becomes:

_d!¢_+£_2(l—z)
dz "z~ =z

for which a solution is:
) k=g+2—z
where C is a constant.

If we assume that instead of (17) , we can take:

£(t=0)=0
z(t=0)=§

where § = o(1), the solution is given by:
56 -2
- *e-n+ 222
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Results of such a modelisation are given on figures [4.1.1],[4.1.2].

We notice that the speed of such a free surface increases fast at the beginning
to reach 3.7 meters per second approximatively after 1 second in our example
(depth=1m). The movement of the free surface is characterised by oscillations, as
one could have obviously imagined, the frequency being around 2 seconds for a
depth of 1 meter. Since this model ignores viscosity, oscillations do not decay but
remain of constant amplitude while in reality, oscillations would cease after a few
seconds.

We will compare the order of magnitude of our numerical results with these
ones.

4.2 Numerical results

A complete convergence study on panels has not been made with the last version
of the code though no difference has been noticed among all the results that were
obtained with it using at least 40 panels on the first free surface (for R=0.4 m), 8
panels per meter at least on the sides of the cylinder, and 10 per meter at least on
the second free surface. The radius of the cylinder was set to R=0.4 m. When the
depth of water is not precised in the following results, it is meant 1 meter of water
above the bottom of the cylinder. In all the cases presented below, the staggered
regridding selected in 3.1 was used. When the radial distance of any node would
become smaller than a very small value, averaging would start automatically in
the code with a parameter N,,, = 500.

In all the cases, it was necessary to prevent the nodes to touch the sides of
the cylinder to enable the computation to continue. Is was also found, especially
without averaging, that the high velocity field encountered in the jet area was
slowing down the computation because of our adaptative time discretisation. As
soon as highly non-physical speeds were found, computation was stopped.

A particular phenomenon observed was the creation of a drop on the top of the
jet as it can be seen on figures [4.2.2.2] to [4.2.2.7], [4.2.2.8] to [4.2.2.12],[4.2.2.13)
to [4.2.2.16],[4.2.2.17] to [4.2.2.19] and [4.2.3.1] to [4.2.3.5]. A second drop due
to the constriction of the jet at its basis (figures [4.2.2.12},{4.2.2.19),[4.2.3.5]) may
also appear. These drops have also been reported in the experiments. We tried
once to carry on the computation after removing the top drop, but this did not
prevent the code from slowing down because of the high speeds in the jet area.
Nevertheless, this showed the creation of another drop at the same place as if to
replace the one that had been removed.

4.2.1 Influence of the second free surface

It was found that the motion of the second free surface is very limited for H = 1m
and no wall under the cylinder. Consequently, another case was considered by
using a larger cylinder radius and a lower height of the water to force the water
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rising in the cylinder to come from near the second free surface. We took R = 1m
and H = 0.5m and we only considered the case without wall. It appeared that
the shape of the first free surface was nearly the same as without the second free
surface even in this case. Results are given on figure [4.2.1.1],(4.2.1.2],[4.2.1.3]
where we can also see that the introduction of the second free surface has not
changed too much the speed of the first node or its position in time by far.

We focus on the position of the second free surface at different times on figure
[4.2.1.4], [4.2.1.4’] and [4.2.1.4"). Since the depth of water used in that example
is one meter, the initial shape of the second free surface is a horizontal flat line
at Z=1 meter. Near the cylinder, the water seems to fall at first while it is rising
in the cylinder (fig [4.2.1.4]). Then a small wave can be observed rising near the
cylinder between 0.54 second and 0.71 second as the average level of water starts to
decrease in the cylinder (fig [4.2.1.4']). It looks as if that wave starts to propagate
away from the cylinder, as it is suggested by figure [4.2.1.4”] corresponding to
time=0.739 second to 0.871 second.

Figures (4.2.1.5] and [4.2.1.6] show the velocity field at time 0.48 second. It
appears that the water comes more from the sides and from under the cylinder
than from the region of the second free surface. It is to notice that velocities are
far more important near the bottom of the cylinder, as one would have expected.

4.2.2 Influence of the wall

Results without the wall were compared with satisfaction to the theoretical model
described above. Figure [4.2.2.1] shows the speed of the free surface in the two
cases. For the previously studied modelisation, the doted line shows the quantity
% while the continous line corresponds to the speed of a point located at half the
radius from the axis, which can be considered as a kind of average speed of the
free surface. Though the two problems are completely different, we were surprised
to observed that the two figures are very similar. We can also notice that after 0.6
second in the case studied, the average speed on the free surface is negative, which
means that the level of water has reached its top position and is starting to decay
and oscillate. Instabilities observed later are due to the very thin jet on axis and
to contacts between some nodes of the discretisation.

The results of the study made on the distance of the wall are shown on figures
[4.2.2.2] to [4.2.2.19]. Distances to the wall vary in the range [0.1 meter-1 meter].
These figures are shown seperately to see the position of the free surface vary in
time for different distances to the wall.

A first observation shows that the computation lasts longer when there is no
wall and then when the wall is far, because the proximity of the wall creates higher
velocities which slow down and stop the code as said before. For instance, at 0.514
sec, the jet has already reached a height of 5.9 meters (probably non-physical) if
the wall is at 0.1 meter, while it has only reached 3.2 meters if the wall is at 0.3
meter and 3.4 meters if the wall is at 1 meter.
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We notice that the wall does not always create higher velocity fields. The jet
is higher without a wall than for a 0.3 or 1 meter away wall for times 0.514 and
0.625 sec. Nevertheless, we fortunately remarked that when the distance to the
wall increases, the shapes converge to the one corresponding to the absence of wall.
This observation is probably more obvious on figure [4.2.2.20] were we compare
the speed of the first node on the jet for different values of the distance to the wall.
It is interesting to notice that without a wall or with a far distant wall, that speed
increases immediately, while it takes nearly 0.1 second when the wall is 0.1 meter
far. This correspond to the time for the water fronts to converge toward the axis
since there is no water to rise under the cylinder in that case.

Velocity fields are shown for two distances of the wall (0.1m and 0.3m) on
figures [4.2.2.21],(4.2.2.22] at time 0.25 s.

4.2.3 Influence of the depth of water

A few runs have been made with different depths of water. We have already re-
ported (figures [3.2.4.3] and [3.2.4.4]) that with a higher depth (2 meters here),
a greater velocity field was observed, as expected, and that it causes some com-
putional problems since we had to improve by a factor of two the parameter for
time discretisation to go on. Results for the shapes are reported in figures [4.2.3.1]
to [4.2.3.5] and must be compared with [4.2.2.17] to [4.2.2.19]. The general shape
is the same as for the 1-meter depth of water except that times are reduced. Before
0.3 second the jet is already very high and the previously reported drop already
created. Figures [4.2.3.6] and [4.2.3.7] show well how much speed varies with the
depth of water, while all the other parameters are unchanged (distance to the wall
= 0.1m).

Conclusion

This study has helped understand better the behaviour of free surfaces and jets in
a particular case.

Many computational tools were tested and introduced to take into account
physical rcalitics which we had first intended to ncglect, such as a numerical vis-
cosity. Other improvements have to be completed.

The code used for this study may be suitable with few modifications to modelise
other phenomena where free surfaces are involved. Even if our attention has been
mainly focused on the problem of the cylinder, the study could be extended to
air-water free surfaces in general. For instance, the code used could be easily
transformed with benefit to describe what finally happens when an air bubble
rises in a liquid, collapses and touch the air-water surface.

We give a few examples with figures [5.1) and following.
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Interferences with the cylinder
Bottom of the cylinder

Velocity field at time 0.48 sec
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Résumé

Depuis les premiers travaux de Rayleigh et Besant, beaucoup de
documents ont étés consacés i I'étude d’écoulements contenant des cavités
gazeuses. Avec |'apparition d’outils informatiques puissants et de méthodes
a éléments finis rapides, I’attention a été portée & développer des codes de
calcul tri-dimmensionnels. L’approche par développements asymptotiques
raccordés permet une étude plus qualitative des résultats car elle permet de
dégager directement les paramétres importants du probléme.

Le but de ce travail est I’étude de I'effondrement de bulles de cavi-
tation au voisinnage d'une paroi solide dans un écoulement potentiel, par la
méthode des développements asymptotiques raccordés. Le type de probléme
considéré se limite 3 1’étude de bulles de dimensions petites relativement aux
dimensions de I'écoulement. Nous adoptons donc le paramétre ¢, rapport
du rayon initial de la bulle A la dimension caractéristique de ’écoulement.
A chaque étape, le probléme se décompose en deux parties:

- un probléme intérieur, c’est-3 -dire, i 1’échelle de la bulle, o la paroi
solide représentée par ’ogive est considérée comme étant i l'infini.

— un probléme extérieur, c’est-3 -dire & ’échelle de 1’écoulement, ou la
bulle est considérée comme perturbation de 1'écoulement initial.

A chaque étape, ces deux problémes sont reliés I'un & I’autre par une condi-
tion de raccordement: dans une zone d’espace d’échelle intermédiaire entre
les deux problémes, ils doivent aboutir & la méme solution.

Les déformations d’une bulle de cavitation, et en particulier l’'observation
d’un jet réentrant (origine du bruit de cavitation) peuvent rouver deux
origines: l'origine physique due directement i l'instabilité de la bulle dans
I’écoulement eu égard aux conditions de pression et de vitesse de celui-
ci; et 'origine mathématique, due au fait que le déplacement du repére et




I'intensité du jet observé dans ce repére ne sont pas indépendants. II est
cependant nécessaire d’adopter un référentiel mobile pour les calculs, car les
calculs présentés deviennent faux dés que l'origine du repére sort de la bulle.
Ils devicnnent donc trés rapidement faux si l'origine du repére ne se déplace
pas avec la bulle.

Les calculs de déformations présentés jusqu'a la section 4 sont ef-
fectués dans un repére se déplacant de la méme fagon qu'un point matériel
dans I'écoulement potentiel initial. Appliqués au cas particulier que nous
avons adopté pour les études numériques, celui d’un corps de Rankine, c’est-
a -dire un potentiel pour 1'écoulement initial égal i la superposition d’une
source et d’un écoulement uniforme, ils permettent 1'observation (figures 2
et 3) d’un jet réentrant orienté vers la paroi solide et opposé au déplacement
de la bulle.

La section 5 présente les calculs effectués dans un repére dont l’origine
est prise & chaque instant égale au centre de gravité de la bulle. Ce choix
élimine toutes les déformations non-sphériques de la bulle; c’est pourquoi les
comparaisons montrées par les figures 4 permettent de constater ’absence
de jet dans ce repére. Ce type de calcul n’a été effectué que jusqu'a l'ordre
e. Ils peuvent étre sans difficultés poursuivis pour les ordres supérieurs, afin
d’allonger la durde de validité des calculs. A l'ordre ¢2, en particulier, ceci
permettrait d’observer des déformations plus importantes.

La section 6 étudie le probéme de la représentation de lignes de
courant. Son but est de démontrer que 1a meilleure méthode de représentation
reste la méthode d’Euler et non la recherche d’une pseudo fonction de
courant.

La derniére partie de ce travail (section 7) présente les calculs du
développement de la forme de la bulle & 1’ordre ¢2. Ceux-ci sont effectués
dans un référentiel dont I'origine se déplace a la vitesse du point matériel
équivalent dans I’écoulement initial. Ces calculs restent & vérifier. Leur
application au cas particulier que nous avons choisi montrent de fortes
déformations des bulles de cavitation.

La complexité formelle, due 4 la méthode des développements asymp-
totiques elle-méme, entraine rapidement des erreurs numériques. I parait
donc indispensable d’en comparer les résultats avec ceux fournis par un cal-
cul fondé sur la méthode des éléments finis.

Outre ces remarques d’ordre numérique, plusieurs points restent ouverts.
Ainsi, négliger les efforts de tension superficielle n’est pas nécessairement un




choix pertineat. D« ...eme, les choix dc repéres mobiles effectués représentent
deux types de choix extrémes : dans un cas, tous les déplacements sont
comptabilisés comme déformations, dans I’autre, aucun jet réentrant ne peut
étre observé. Il est possible d'introduire dans le modéle un paramétre per-
mettant de choisir la mobilité du repére de facon i se situer entre ces deux
cas extrémes. Un tel mode de calcul conduirait vraisemblablement & un
choix optimal de ce parameétre, et donc & une représentation optimale du
phénoméne d’effondrement. Enfin, une introduction de la viscosité dans le
modéle permettrait une extension de son champs d’application.
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Abstract

The behaviour of a bubble in a flow field near a body is studied using
a matched asymptotic expansion, the small parameter (ro/lo) being the
ratio of the initial bubble radius to the initial bubble standoff distance
to the wall. Assuming the bubble to be small compared with the flow
field length scale, a Taylor expansion of the pressure and velocity of
the flow field can be done. The nature of the interaction between the
bubble and the flow becomes more complex as the expansion increases.
The theory is applied to the problem of a bubble collapsing near a semi-
infinite bluff body in a uniform flow field. Results obtained at order
¢ and order £? show the formation of a curved jet moving opposite to
the bubble trajectory and towards the wall and an imparted rotation
of the bubble. Analytical results from at 2 are given, and have been
computed. In order to lengthen the validity lap of the calculations, a
translation velocity of the center of the frame has been introduced at
order . Results have still to be compared with a 3D boundary element
method.




Introduction

The understanding of bubble and cavity dynamics has preoccupied re-
serchers and engineers over the past several decades. Since the early
work of Rayleigh and Besant, numerous papers and books have been
devoted to the study of cavity lows. With the advent of new mathe-
matical and computational tools, increasing attention has been given
to develop three-dimensional nonlinear numerical codes. Approximate
theoretical approaches are very useful, since they give results at a much
lower cost but they may be somewhat less precise than fully 3D meth-
ods. Bovis studied the collapse of a bubble near a wall using the
simplifying assumption of neglecting the pressure and velocity gradi-
ent across the bubble. In this study we shall present results from a
numerical and analytical study of the growth and collapse of a bub-
ble in a general potential flow in the vicinity of a solid object. The
sclected analytical approach consists of using the method of matched
asymptotic expansions. The small parameter of the expansion (¢), is
chosen to be the ratio of the initial bubble radius to its distance to
the wall. At every order the problem is decomposed into two pieces:
an ‘inner’ problem where the characteristic length is the bubble radius
and an ‘outer’ problem characterised by the bubble standoff distance
from the wall. The eflect of the wall appears only as a limit condition
at infinity for the inner problem, and for the outer problem the bubble
appears as a perturbation at the origin. A new fictitious flow is in-
troduced by substracting the the initial flow (no bubble) from the real
flow (presence of the bubble and the object). Studying this flow has
the advantage of having staightforward boundary conditions at infin-
ity. The calculations are done in 2 frame moving with the bubble 30 as
to follow the bubble behaviour over a longer period of time otherwise
the results become wrong as soon as the origin of the frame is outside
the bubble. The bubble is assumed to be filled with liquid vapour and
non-condensable gas which follows the polytropic law PV* = constant.
A dimensional analysis will leads us to make assumptions on the ini-
tial flow, for example the initial radius of the bubble has to be small
compared with the length scale of the flow. The theory developed here
can be applied to any potential flow which has at least one plane of
symmetry (easier calculations) and will be applied to the problem of
a bubble collapsing near a semi-infinite blufl body in a uniform flow
field. In the example presented, the potential used is that of a source
in a uniform flow field so that the complete problem has a plane of
symmetry.




1 Problem formulation

We first set the system of equations of our problem in a moving frame which we take
such as its origin is insidg the collapsing bubble. Its characteristics regarding to a fixed frame
are given by its velocity V, and its rotation &. We will note :

Vo the velocity due to the initial potential flow without the bubble

¢ the additionnal potential due to the presence and dynamics of the bubble, in the mov-
ing frame

r = R(0,v,t) the bubble shape equation in the moving frame.

Let us note O the frame center, 7 the normal to the bluff-body wall or to the bubble wall,
p(r,t) the pressure due to the initial flow ,po(0O,t) the pressure due to the initial flow at point
0, and M a field point. Therefore, the equations of the problem are :

V=0 ®
Jim =0 .
{Vé.7}bodywatt = 0 @)
{Vé-i}rar = 9-1-2 +{[(V. - %(0,1)) + & x OM].7}r=r @

“ 1(‘7<ab)’+(1’o(r.t) V.-G x0M).Vo+= (V*(,- t)-V2(0, ,))4.?}"3 - po(t)(s)

Taking into account the fact that the pressure inside the bubble is supposed to be spatially
uniform and that the gaz inside the bubble follows a polytropic law (PV* = constant), we may
transform the last equation of our initial system in:

P + (V87 + (Tu(F) = 7o 3 x OM).V4+ (R0 - (0, 0) + B} un =
y-k y-k
(Po(t) = Pinit) + (Pinic — Pu)(1 = ;;.1;) +& (fo - —-:) (6)
Pv = initial partial vapour pressure in the bubble
Pinit = initial total pressure inside the bubble
ro = initial bubble radius
where: Vo = initial bubble volume
y = bubble volume
(o} = bubble surface curvature
¥ = surface tension coefficient




2 Non—-dimmensionnalization of the problem

In so far as we limit our study to problems such as the bubble dimensions are small compared
to the characteristic initial flow field dimension, we will use the matched asymptotic expansion
method to calculate the complete flow field evolution, including the bubble collapse. This will
lead us to set a small parameter that we will denote ¢ to separate the scales of the inner and
the outer problem.

2.1 Notations

Two problems have to be solved simultaneously:

- An inner problem, that is to say, the problem of the bubble behaviour in the potential
flow, whose scale is given by the characteristic size of the bubble (ro), and whose variables will
be denoted X : o

r = rof

P = (Ap)p

t = Tot

6 = 3é

Voo = wWh
VWo = M(VVo)
VVV = N(VVV,)
w = Q@

- An outer problem, that is to say, the modification of the initial flow due to the presence
of the bubble, whose scale is defined by the characteristic size gf the flow : the radius of the
semi-infinite bluff~body (l); and whose variables will be noted X.

Therefore, the small parameter we use to expand these two problems is the ratio between the
two scales :

and we will use the following asymptotic expansions for the problem unknowns :
$(i", oa ¢1 t) = 30(’-'! t) + ‘61(;v 01 ‘ﬁ,i) + ‘2611(’1' 0» *1 z) + 0(‘3)
$7,0,9,0) = (7D +edi(7.0,9,D +e*¢rs(F, 0,9, +o(*)
R(8,9,)) = Ro()+eRi(9,%,)+R11(8,%,0) +0o(e?)
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To match both problems, we write that they give the same solution in an intermediate-range
zone:
for ro € » € lo we must have : @ipner(F) = Pouter(F)-

2.2 Expansions calculatious

We develop the following expressions using Taylor series :

2.2.1 Initial velocity field

We will first use a moving frame which origin moves at the equivalent material point in the
initial flow velocity, and which z axis is always parallel to this velocity : V, = Vp(C,¢) and,
Vo(0, t) = vouz(t)é; in the moving frame. Therefore, we can write a Taylor series expansion as
follows: .

Vo(7,t) - V, = M7VUVo(0) + 3r3NF.YVVH(0).5 + ...

(Vo(7,t) = V,).V = BV.(MToFTV(0) + 1N Toro?.VUT(0).7 + ...

HBFEH-VH = B(MTFRFIVY(0)+ TFvNF.VVV(0).7Ve(0)

+3H(MTF.IVo(0))? +...)

We suppose the problem to be symmetrical about the (Ozz) plane in the moving frame. Thus,
recalling that V.% = 0 and V x ¥ = ), we must write :

- [+31 0 a2
V¥(0) = 0 0 0
a 0 -

Calculating VV;.7 and 7.VVV,.7in the moving frame polar coordinates we obtain :

) 2a; $in0 cosd cos + a;(sin?f cos? ¥ — cos? )
VWVo.f = » ay sind cos 0 (cos? ¥ + 1) + az cos cos 20
| —ay sinf cosP sin — az sin cosl criterte
[ G.(0,%)
=r G'(eﬁ d’)
L Gu(6,¥) er 0.8y




and:

H,
with:
8&2 aal 2 2
H = (—5- )(cos 9 sind cosi:)-{-( 8 +2—)( cos 8 sin? @ cos® ¥)

2.2.2 Moving frame rotation

Since the problem has a plane of symmetry, we shall take & = w(t)éy.

GXOM = wr(éy x&) - (7
0
= wr [ cos J (8
~siny sinf
€r,¢0:8y

- ARy = TO R sint cosd OR
(GxOM)-fi= T (-wTo c“'ﬁ.ii +wT°—_-sin0 w) (9)

- _ a¢ sinp cosl 8¢
(waM)-VqS-.-fg- (wTocoubw-uT—-“?o—-a—#’-) (10)

Let © be the characteristic rotation speed of the frame. We shall assume that Q T is of order ¢.

w=Qo

UTO=¢¢:I




2.2.3 Geometrical data expansions

VOLUME :
The expansion of the volume is necessary to know the pressure terms :

Vv = i///r’sinﬂdrdﬂdrll

4_1 " ¥ f sin (B3 + 3¢ B3R, + 3¢X(RoR} + R3Ry))) b

RO + 3€R°R100
+3e%(R3R1100 + Ro( R0 + 3

2

Rllo + 3 3

1
3 R}, +3 R I+ ER}J))

at order e2.
CURVATURE ;

In the same way, we can work out the expansion of the curvature, to develop the surface
tension terms: if B(8,¢) =7 — Ro— ¢R;(0,¥) - 2 R;;(8,9),

¢ = V. (—Vﬁ-)

|V B
G = 1 +( cosd 8121 { 82§1_ _ 1 8’&1)
Ro 2R3sind 90 2RI 06°  2(Rosind)? 8%
te 2( cosd R,azz, cosd ARy &82371 R; 3Ry,

R3sin8 R, 99  2R3sind 00 ' R3 06° 2R3 06
R[ 82R1 1 O’Rn + 1 82é[)
ToR3sin02 02  2(Rosind)? OY? = 2R3sin?d OY?

_L

NORMAL :
Using the same function B as before, we have:
-_ VB
7]
since the scalar product with other terms will lead to higher order terms, we just need to know
the expansion of the normal till order ¢ :
1 8R; .. 1  OR;.

A T I -seey iy =)

=& —e(=—




2.3 Consistency of the different scales

By application of least degeneracy principle to equations (4) and (6) , we get the relative
values for the different variables we need : we must have :

apT¢ _
PTo
MTy, = ¢
N roTo = ¢2
QTQ = ¢
To complete the non-dimmensionnalization of the inner pro! icm, let us define:
= gl
b= v
_  Pinit — Pv
P = ~ar
L
w - roAp

(11)

3 Problem formulation till order ¢

3.1 Outer problem

Till order €2, we can approximate the shape of the bluff-body as seen by the bubble by
a flat plane : we shall take {1}sodywati = €;. The outer problem obeys the following system :

Vg =0 (12)
Jimé = 0 (13)
{Vé.&:}todywan = 0 (14)




3.2 Inner problem

We neglect the surface tension strength, in order to simplify the future developments on
spherical harmonics. The expansion of equations (4) and (6) give us the system of equation for
the inner problem till order ¢ :

Vg =0 | (15)
{VJ’-'T},-,n = O (F9Vi(0) + 5% P e (16)

{ ¢, 1 (v¢)2 + e VHFETVO(0) + 5 x ) + enlo.(FTVo)} ;g = AF(E) + ek P R‘°°(17)

4 Resolution

4.1 Order °
4.1.1 Outer problem at order ¢°

System of equation (12) to (14) for the order zero becomes:

V3o =0 (18)
Jim go =0 (19)
{Véo- ﬁ}hal-. = (20)

The general solution to this problem is a combination of spherical harmonics, such as :

_ y
S G + 1




where Y, are spherical harmonics depending on the values of the angular positions (see equation
(42), section 4.2.2). To satisfy equation (19), we have to leave out all the terms in #*. To respect
the condition given by equation (20) we have to introduce an image bubble, symmetrical about
the solid-body wall. If we write ' the distance between M and the center of this new bubble,
and take into account the preceding remark, we can develop the outer potential at order 0 as :

- = 1 1
%o =3 Ba(f) Pa(cos8) (7 + ;ﬁ) (21)
n=0
P, are the Legendre polynomia of degree n.

4.1.2 Inner problem at order ¢°
System of equation (15) to (17) for the order zero becomes:

V4o =0 (22)
8o,  _ 3
{F;'}rhﬁo = Ro (23)
-k
G Ly = asn+r0-L e BT (29
(3 0

From (23) we get the solution

do = % with ¢ = —Eozéo (25)
where Ry(f) is determined by the Rayleigh-Plesset equation:

Fallo + 5o = 080 + PR - 1)+ (B - ) (2)

the initial conditions are Ry = 1 and Ba=0

4.1.3 Matching condition at order zero
If we replace the potentials by their expansions, the matching condition is:

B (o2 + FD) + F(Z) +0()) = bomt () + BE) + P ) + OGS 2D

_ L & 1,1
The solution to ¢y is ¢@o = nan(t')Pa(COG 0)(‘;;.,:{' + 3,‘.'...—1)

do is ¢o=-:.-+C C is a constant to be determined




tg (240 +ei(2)) = buxe ([T BulE) Puleos) 1 + (R + D) + ) (28)

At leading order we have:

C =0 (29)
= 1

Pezt = T (30)

Ba(¥) = 8n0 4(?) (31)

To obtain the limit condition on ¢;, we must continue the expansion.

2
)+ edu(D) +0(6) = § + Ixeost +eb D) +0(Z)) (32)
T; is of order O(¢) so equating terms at leading order give us:
im ¢y = 1
fliméo 1 = 2 (33)
. 4.2 Order ¢

4.2.1 Inner problem at order ¢
Remembering that R, and @y only depend on time, at order ¢ the problem becomes:

Adr=0 (34)
im ¢y =3

lim ¢ =3 (35)
LI R JY 3 (36)

8 . » B0 . 9918y , - Odo 8%y [ -
(57 t Rigsas + 3297 + Rig2 5z + BaGr g2 + pus(t) Ro F(0,9)} g, =

3KPR R;3K-1 (37)
where G, = 2a; cos 4 sin @ cos ¥ + ay(sin? @ cos® ¥ — cos? ) (38)
F = a;sindcosy + azcoshd (39)




-

4.2.2 Resolution of the order ¢

Let us take:
3 = & 55 , Brim
ér = g Zj(AIjM’J + 557 Yim (40)
JjmOm=m—
oo J .
I= Z Z lemyjm (41)
j=0m=—j

Y;m are the spherical harmonics:

P™(cos ) cos my form>0
{ 1""(cos 0) sin |mly form <0 (42)
The limit condition at infinity on @; leads us to take:

Atjm = b0 3 (43)
Since the problem is symmetrical about the (Ozz) plane, there will not be any terms in sin ¥, .
we do not have to consider m < 0. Knowing that

cos 0 sin @ cos ¢ = %Yn (44)

sin? @ cos’¢-ms’0=—Ym+1;2- =Y; (45)

Equation (36) and (37) become:
;;;1 BrimYm + gnz,,..r,m = Rijn¥im = 2 Boas¥an + o BolYoo - 2 (46)
i+ g::; Yim = 4 Bintim + L2 B nYm - 2%1::,-.19-... - g tort-

Fou(~Yoo + T2 + ullonu(anYas + aa¥io) = Rroo¥in3 KPR K (7)

For j > 2 we have a homogeneous linear differential system where the initial conditions are
zero. The solution is therefore Rijm = Brjm =0 Vj > 2

10




4.2.3 Resolution form=5=0
We have to solve the following differential system:

Broo Rioo _ 3
-— +2¢— = Rioo (48)
R} R}

q 5 _ B k-1, L appak-1_ L
-2-+ Ro +R33m (E+E)Rloo-ﬂloo{3x7’ﬂosx l1’W(3K&)m 1‘3?3)}(49)

Rioo is the solution of the linear differential equation:
Rodoot 3ot Faltrn = ~ Rolly—3 Bha— Rino 8K P B304 5 (K R~ 2))(50)

and Bjgo is computed using:
Broo = —(R3R100 + 2RoRo R 100) (51)

4.2.4 Resolutionforj=1

We have the same differential system to solve for Rpio and Rp;. We just have to replace oy
and Rpo by az and Ry, in the system giving Ryio to obtain the system leadding to B3

Resolution for m =0 We have to solve the following differential system:

Bno Rio _ 3
~2—=— +2q—— = Rno (52)
R3 R}
BIxo 2-—-—Bno ('g + = )Rno + pRoveay = (53)
B R y.7}
Rp10 is the solution of the linear differential equation:
ﬁoino + 3§o§no = 2uRoa v (54)
z 1 rt. -
Bro=z: [ wBinande (55)
R3 Jo

and Bjyo is computed using:
laa2 . =203
Bno = -3 R3Rno - R3RoR 1o (56)

11




Resolution for m =1 2, and By are computed using:

Rnx = - / 2}&3%!7,02& ' (57)

Bm = -‘;'Rgilu - Rg-.&oﬁlu (58)

4.2.5 Resolution for j =2

We have the same differential system to solve for Ry and Ru As before, to get the system
giving Ru from the system giving Rys;, we just have to replace a; by §ag

Resolution for m =1 We have to solve the following differential system:

B Rioo
=+ 20— = Rm - -Roaz (59)
R§ B
B 2
i G Bm-(“ ') Brgy~—Lay=0 , (60}

R} " R§ fioR% 3R,

Ry2 is the solution of the linear differential equation:

- L % . . 10z - 2-.,.
RoRn + 3RoR121 — RoRrn = ?koﬂoaz + 3330‘2 (61)
and Byj; is computed using:
R4 - 2.2 = 2.
By = -%3-3121 - §R‘3RoRm + 53301 (62)

Resolution of the coeflicient in front of Y; Rjy is the solution of the linear differential
equation:

RoRis + 3RoRig - BoRyy = 5Rofoay + Bloh (63)
and By is computed using:
RS = 2., = 1
By = —-?RU - 3@1201!;, + ERaal (64)
The potential and radius at order ¢ are:

- B 1 .
é1=3 + =12 + 5(Bnocosd + By sinf cos$ )+

:13-(38131 sind cos 0 cos ¥ + Bis(sin® @ cos® ¥ — cos? §)) (65)
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RI = le + Rnomo + é[u sinf cosy + 33(21 sinf cosd cosy +
Rys(sin? 9 cos®  — cos? @) (66)

5 Recentring the moving frame

5.1 Problem formulation

In this section, we fix the origin of the moving frame in which we caculate the bubble
shape to the center of gravity of the bubble. _To do so, we introduce a translation velocity ¥, in
the primary set of equations: writing V, = V5(0,¢) + V; , the system to solve is :

. Ad =0 (67)
lim¢ = 0 (68)
{Vé.}odywatt = 0 (69)
(V6:7hmr = 5 +{176(0,8) + Vi~ Tolr,) + @ x OM}Thrmr (70)
(a3 (V87 +(Ta(r.-Vo(0,)~Ti-xO1). V(R .11V (0, )+ 2hmr = B2
If we expand this translation velocity by developing it : = Vo+eh+ Vi + ..

the system at order 0 just contains @o and R, which have only sphencal deformations. At order
0, the origin of the frame, moving with the equivalent material point in the flow field is fixed
to the center of the bubble. Thus, we shall take Vo = 0 and only consider V; for order ¢ and
further.

Let us choose a scale for V; in order to non-dimmensionnalize the set of equations. If we
take V; = Vi.4% , the system at order ¢ becomes :

7= el )
t ‘To 1 ( )
AR, 831

{ +Rt };,,R, = o GrRo+(V1 &) sind cos¢v+(V1 &) sind sing +(71 &,)cosd(73)
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8 8 8¢; 8 Odg 524 8
;{m;mg:«k :;;fw ::‘ 28+ G 25 0% | () RoF

_%t:.g((a[-sg) sinf cosy + (Vt.é',) sind siny + V,.&',)mo) = 3gp§1§5-3k-1 (14)

if we neglect the surface tension.
Let us write the condition for the origin of the frame to be at the center of the bubble.

5.2 Conditions on the value of R;

If O is the center of the bubble, then

///Wﬁ'dn =0 ) (75)

with : 7 = (Ro(t) + eR1(8, 9,2) + 2 R11)E,
Expressing this condition :

/ / /w;'-’dﬂ = / /mi(ﬁo+¢§1)‘ﬁnaé}dﬂd¢ (76)

At order ¢, 3(Ro + eRp)* = 1R + s R3R( + O(c?)
Thus, the condition has to be written, at order ¢ :

/ /m B3R sin0z.d8dg = 0 )
Recalling that

Ry = Rioo+R110c080 +Rpyy $in0 cos$ +3R 121 sind cos cos ¥ + Ryy(sin? 0 cos® p—cos? 0)(78)

&(0,%) = cos0¢E, + sin0 cos P&, + sind sin &, (19)

we obtain the condition, at order ¢ (taking into account the symmetries of the problem ):
Rny = Rpo =0 (80)

14




5.3 Calculation of the translation velocity

Let us note V7, = 91 & Viy = ?1 & Vi = 71 &

If we re-write the projection of the system on the spherical harmonics, we have now the new
linear system :

J +1
Ro+2
VI:YII + ‘-’Izylo + ‘.,Iy sind siny

2q
BIJMYIJm + = RthmYJm = RIJmYJm - -Roazyzx + QIRO(YN - "_')+ (81)

i B = . 2 2
%Yoo + &I‘:“ Yim - Rsﬂtjml’jm +0+ 1)-.--474-Bt5m1’5m - 23&%&,'.“ - 3—§;qazl’z~1- (82)
-g:al(—yzo + -%2-) + Rouz(t)(a1Ya1 + a3Y10) + é(f’lzyu + VisYio + Viy sind sing) =

3}.:2 100Yook P éo" 3k-1

As no term of the development-contains spherical harmonics in sin ¢, we may immediately
deduce : Vp, = 0.
We re-obtain the same system for § = 0,m = 0;j = 2,m = 0,1,2. For j = 1, the system is
different, because of the condition Ry = Ry = 0. For j = 1, the two linear systems are
transformed into:

m=0
—BR%-‘-’- + 2-%8110 + uRoayve + i%f’;. =0 (83)
--%Bno = Vi, (84)
which gives:
Vis = %—‘3‘ /: R3ayv.di
m=1
By + 2}’-3-8;11 + pRoazvs + é—;f’u =0 (85)
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2 -
-7&3111 = Vs (86)
which gives:

?[, = %—-g /o d R%azv,dt'

6 Streamlines

The purpose of this section is to show that the most convenient way to draw streamlines in 3-D
problems is to use Euler’s method. We will apply it, afterwards, to the flow we are studying
(including the bubble).

6.1 2-D problem

In two dimensions, the most convenient way to draw streamlines is to introduce a stream-
function defined by the system :

% _ ¥
oz

% _ %
8y oz

(87)
Along a line such as y(2,y) = constant, we have :

f(2,v) = ¥(2,y) — constant = 0
which gives :

1 _9

b
That is to say, the normal to the line at each point is normal to the velocity of the point in the
flow field. In other terms, tangentes to points on lines such as ¥(z,y) = constant are equal to
velocities. Thus, these lines are streamlines.

Let us remark that such a definition is made mathematically consistent by the fact that V3¢ = 0.
(To define a stream-function, we shall have :

16




8%y _ 8%y
dz8y ~ 8ydz

This condition, in terms of ¢ is equivalent to V3¢ = 0)

6.2 3-D problem

In three dimensions, let us show that the previously described kind of approach is not
applicable :
If the problem has no special symmetry (plane of symmetry, axis of symmetry), it is not possible
to exhibit a stream-function : let us suppose an equation such as (z,y,z) = 0, this equation
gives a surface and no line (except in the unlikely case of degeneracy).
Thus, it is not consistent to try to describe a streamline by such an equation in most general
cases.
Let us assume the flow field to have a plane of symmetry. Let z = 0 be this plane. In this plane,
we have :

8¢

- =0

8z

A stream-line beginning with a starting point belonging to the plane must belong to the plane.
Thus, in the plane (Ozy), we may describe this curve as :

f(z,y)=0

All the stream-lines belonging to the plane of symmetry may be described by ¥(z,y) = constant,
where the constant depends on the starting point.

The condition on this 2-D stream-function to fit the problem is that its gradient is perpendicular
to the velocity :

%g = -k(c,y)-%% (88)
%? = k(z,y).%g (89)

Trying to solve the problem in the same terms as a 2-D problem leads to:

% _ 8
= = 5 (90)
% _ 9

3 " B o1

and the consistency condition :

17




8y _ 8%

8z8y ~ 8ydz
leads to :

9% 8¢

%21t 5
which is not valid in most cases, since

8¢ 8% 8%

521 T o2 T om
Thus,we must introduce a coefficient k(z,y) in the system (90)-(91), which gives the system
(88)-(89).

=0

=0

To have the superposition property, we shall impose that V3¢ = 0. (This is obviously
respected in the 2-D calculations). Let us figure out this condition:

2
B = Hen(- ai§y> X

2
S = Han(Ee)+ g

(92)
As we have imposed V24 = 0, this gives :

ok o0k

8y 8z z Oy

— 9k
which is: :'? - g wherea is a proportionnality coefficient, not depending on position.
The mathematical consxstency condition may then be expressed as :

82
;,—,aiy = ka2t ""(a:

2
oy = Mz 33 +adly

(93)
which leads to :

b0 (58 + 558 = - (527 + 21)

We know that V2¢ = 0, therefore, we must have:

Ha)g 5 =a (G +32)

18




From :

8k 8¢
% - %5z
Ok 22
dy = 8y

(94)

we get: &k = ag + 8; then :
2
(as+ 055 = o (G20 + (327)
which leads to :
[" )2 + ( )2] %379 = constant

This condition is not always respected for any kind of potential one can take (respective of
the plane symmetry condition).

If we just try to solve the. problem for each case separately, the approach is exactly
the same, but, the single condition to remain is the mathematical consistency one :

k(z, )8¢ 8¢ 8k+8¢ ok
By 9y " 9z 0z
Therefore, to find out the streamline we are looking for, we have to compute the following
system:
) _ 890k | 940k
Kz,0)0Gm)= = 3,5, V3252
o = He)g

oz
8 _ 94
E = E(B,y).s;

and, afterwards, to solve the equation : ¥(2,y) = constant

This system is more complicated to solve numerically than the implementation of Euler’s method,
that is to say, at a given instant, to start from a chosen point in the field and to find out the
next point of the streamline by expressing the fact that the streamline from one point to the
next is equal to the velocity given by the flow field on this little step of space.

19




6.3 Results

The pictures show streamlines calculated by Euler’s method, at order ¢ in both cases of
a growing bubble and a collapsing bubble.

7 Inner problem at order &*

7.1 Terms of order ¢?

We need the terms of order ¢? for the following expressions :

8 3¢n 81 5 8o  1:,8%
% o +R‘ai2+R“ar-2 t3h5e

_LOBOR 1040k
R0 90 ~ " R2 06 a6
1 djR 1 84108,

" R2in?90%0% R3sin?g 09 09

R 7 8% Gy 9R
(ﬁc-vO)-ﬁ M -le‘Ef-GrRI"G' 801 dn*o 8¢I
1 R
AL RM ——V1&+ V1 s
-(@x OM) -7 : &(cosy 81:1 - ﬂn:nc:aﬂ GR,)
3 . 8¢II 9 ¢[ ¢0 . aaéo
Tn: t = T Rigge t Rugs + 23’81.81‘-3
1(89\" . 3o (8éu 5 O ¢, azh
2 (FF') . T ( oF +Rl + Bp—= } )
. 84” 2 34’1 8’¢o
1 ()", _1__ @
2R2 \ 80 " 2R3\ 96
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2Rsin%9 \8¥ ) 2&3.in=o )
(Vo-V.)-Vé : -ROH, +G,( 8¢°+Roa¢’)+a
¢ I_ V. rWm

8¢1
o

8¢t

TR T

-V[ G'-

(v3 - v4(o, 1) : uv,,.(t)RI(az cosd + ay sind cos ) + R3(G? + G} + ¥?)

N —

+%pv,(t)ﬁ3(11c0320 + 3 8inf cosf cos )

8¢r _ siny cosd 86;)
30 ~  sind Oy

TXOM-Vé : &(cosd

7.2 Problem formulation

As before, the problem is described by the following system :

V3¢, ‘=.1,0 (95)

9¢1r _8Ry _
Xy aky-21 = B (96)
8:£’+c'1z +D. g_" = E (97)

where the ¢? order unknowns are ¢rr and R;;. A,B,C,D and E are fanctions depending on
time and on position for C, E, D ; given directly by the asymptotic expaunsions of the primary

system.
If we work out the values of these coefficients, we obtain :
9o
4= 3=
_ _5 8 RISk 184108 1 8:9R; R}
B = -Bipm -5 3% Y00 90t Feinia 09 0% -3 B -Gk
8%; G, OR; . R, cos9 9R;
+Gogy + g o ~ OV —inY )
1 8R[= - 1 83[‘7. - ‘7 -
—E; 39 Vr.€ mw 1.y + V1.6
_ 8% , 90 8%
C = 5% t o7 o
p = 9%

oF
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2 - - - - - - -
E 8 ¢I ﬁ 83% E 8‘082¢I I_;Iahyh __;_(8 1)2_;?3'0_:.

E = F5ia7 2o£ar"arar°=“ o 0P o
R? 8 ¢o), ¢9¢13 $o _ ((am 1 ,85:),)
o7 07 " 2R3 " sini0' 0y

¢o 84’1 31 Gy 84
'G'(R‘ 7) =G0 ~ 3ine oy

—;w,(t)Rz(agcos 0 + ay sinfcosyp) — R}(G? + G} + G3)
—-2-tr,,.(t)Ilo('m:o.s2 0 + v33infcosf cos y)
coa 0 31

+&(cos vﬁ-a-ﬂ - ainrl: ) + 3kP(R3%* ' Rypo0 + ----)

8'
+‘7[¢r ¢ +V13r :.o

7.3 Inner problem expansion on spherical harmonics

- The matching condition ot: the inner and the outer problems enables us to limitate the
development of ¢;r on spherical harmonics. The outer problem’s solution at order ¢ is like:

ér= K(-’l_: + ;1;) + L(P K is a constant to be determined
In equation (32), we can replace ¢; by its value:

- 4, Bio

or= 3 +—3 + ..

Thus:
B Dy+0(e=)=K(1+-+ 8+
Ioo+,o¢n( )+ (¢ ) (+ )+ lo cosb + Le-
Wecantake-,o—- = #F € 1, term which sha.ll appear with ¢y;. Finally K = Byoo.

du(= )+0(=)-”’°°+L+-  cosd +O( - )

= hm (¢"(1‘) - —— -L- 41"6080) =0
Therefore, we shall use the following development on spheria.l harmonics :

P t

o) = 290 4 1 4 ;0000 4 5 Brim(DHR (98)
In the same way, we are going to develop Ryp as:

Rir =3 Rutjm(®)Yim (99)
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7.4 Resolution of the problem

Using developments (98) and (99) found in section before, we now can work out system
(96) and (97) in terms of the independent spherical harmonics ¥jm :

- .
o~ 3 Lt ButinYim + AL RitinYim = & Eim¥im = T Bin¥im (100)
Bioo 4z 009 L B Yim +C S RizimYi 101
T+Z cos +Z;:",Tl‘ IIim 1m+ E I[Ijmd jm ( )

1
=D (qY Z U ::2 )B[[,,,.Y,,,.) = Z EimYim
We have developed the previous equations respective of the fact that :
A = Ago(2)Yoo; C = Coo(7,2)Yo0; D = Doo(7, %) Yoo
from (100), we get an expression for Buj,,.:

Di+2
. +2
Blljm = “;‘R'.;‘ (BJm + Rllﬂll - AB[’JM - ARH')M)-J ROR{H (BJM + Rll)m - ARIIJH)(102)

Then, we can replace Byrjm by its value in equation (101) to obtain a second-order in time
differential equation on coefficients Ryyjm :

5 (B By _j+2;

Ru,...( )+Ru,,..( 31 +1R° D) (103)
R 2 2z Ro

+ Rpgjm( A2 f_°1 ; *2 Afly +C + AD) = Ejm + DBjn + ’* IE2 foBjm + o5

i+l

for (j,m) = (0,0) and (j,m) = (1,0), the second member of the previous equation has to be
completed by the following additional terms:

(Gm)=(1,0) : -Seko~3iko

Gom) = ©.0) ¢ -2 ¢ @ep -2 (1 FEED) (Bho+ b+ 32ha + b + 3R1)

The calculation of the differential equation coefficients gives :
Ry

A‘-:-‘—-.-.—




A _ By ko
-d—t.-—2-ﬁ-8-—2.—
C = R
D = Ry

We now can sum-up these results by the following differential equation:

Co(j)lzinjm + cl(j)i}-",im + c2(j)RHjm = Ejm + c3(j)B:'m + c‘(j)Bjm (104)
at which we add the following terms, in both cases (5, m) = (0,0) and (j,m) =(1,0) :
. B - 3k(k+1 = ) 2. 6 - 1.
(7j,m) =(0,0) : Ioo —_ (3kP)R°'3k 2 (1 - (—2)-) (R%oo + 53%10 + sﬂ?n + gﬂ}n + §R}!)

(4ym)=(1,0) : §R0R0 +'8'R3R0

The coefficients C;(j) are given by the following array :

j Co G [ C3 Cq

0| -k | -5 -50-4%:-3”1?;3*-1 3% | Ro
1| -% | -]k -k §R | 420
2| -5 | -4 dRo - 4% §Ro | 30
JEIETY RIS S TNID
| ¥k | th-dh | ke iR

Terms of order 1, R; and @; are componed of harmonics up to order 2. Their product will
lead us to harmonics up to order 4; that is to say, we are going to develop 15 independent
differential linear equations from Yoo up to Yiq.

Let us write E/,, the sum Ejm + C3(7)-Bjm.
Results for calcnlatxons of terms Bjm and E, for the 15 spherical harmonics are given in the 4
following pages :




Resolution for j=0

R - = R 4 Y - 3
Bgo = -—%(23100 + 3RoRoR100) - Tl{:g(EB'm + RoR3 Ry0) - %(%Bm + R3RoRm,)

&121 18

Ro Bm += RoRSRm) - Ro (—Btf += ﬁoﬁgRu) + —asz - —alﬁu

, R L 22 : 2 . . .
By = %(4&,&, +2RoB1o0 + RoR3R 100 + RoBrog)

JRno 452,
1;,0( RoR3Rp - —RoBuo + RoR3Rro + 2 RoBm - L. k)

Rm
33

R 18 52 -, = z =
+ 55 5 BoBRm + RofdRim - "B By - g0 kol$ + 3 Botim)
111 =

Rtf(_ RoRgp_u.,.ﬁofgg ,,-_ROB,,-—alioRS+-§oﬁu)

—=(= RoRoRm + 30333111 - —RoBIu += RoBm -Vzalﬂa)

Bioo® - 2, Bm

2R | RS RO YR T8R TT0™
B[/(__]_.l Biy
B 6 R

+akp) R - BEE Dy gy +3Bho+

_ Bno? 7 Brn, 3Bm , 13 )

2
+= al) Ro(wan +§az)
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uln
::q.
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Resolution for j=1, m=0

By = --a-(ssm +6R3RoRp10) - -ﬁﬂ(zam - —éoxszu - -—Bu)

R
1;: (—B m + —-RgﬂoRu) - -13—3-{3"

6R
+—#Bnc -

S RY

-l-azim -wRy - ﬁ('h +273)

3 .
—aRm + 0

Tay fiho - 10

5

o= I{;o =2(2RoB110 - 201’2an0 - mﬁzﬁaﬁno + 2%&;1?"0 - puzaa )

Ré%o(RgB’” B3hoBrmn + § Bloss - ghokdhy + ThoBy - 3hoby - ki) @

Ré:‘(lgﬁoBm - —fioBm + 3831:1?0 153’0&1{ - ioi%az - gﬁoﬁgU)

R 27 = 5 =
Igl ("_R-OBIII + RoB[n pv,alﬁa + zazﬂoﬁ)
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Rf‘s

Brio,,oB1y Broo Bm Bm
2 18—=L - 10— +3aq1) + —=(~12—=—+ a2 +
RoRo(‘h-!- 73) + —= RS( 1 B + 3a1) R% 7 az + 5w)

(-Rano - Rano + -#020:% + -azﬁoic‘;)
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Resolution for j=1, m=1

By = -%(Bsm + Gioﬁgﬂm) "o(—Bm -?'ioﬁim)

B
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Resolution for j=2, m=0

By = %(12311-*- R 3R 1y)
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Resolution for j=2, m=1
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2 2 17 1
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Ej = .%s(mopm ~ o B m + 2RokbRim - o8y - Doyt
11;0( sRoBp, - 8Ro§3§m + -Roﬂgﬂm - —ﬁoBIu - -a;v.pka)
Rlu

33 ( sRoBn, ~ -—Rano - 3'02':#33)

%(Mm -~ —éoBIoo + gcléoﬁ) + I‘%élljo(az -w)

2 1 1 3
+322B100 ~ == Br10B11 + = BBy - —~=—B100Brs;
3 5 . Y-

o 2 1 B
-——y &0‘73"!‘-0 - 2 —E— =~ Qg
6" R N 'H R




Resolution for j=2, m=2
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Resolution for j=3, m=0
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Resolution for j=3, m=1
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Resolution for j=3, m=2
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Resolution for j=3, m=3
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Resolution for j=4, m=0
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Resolution for j=4, m=1
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Resolution for j=¢, m=3
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We give the values of the 15 harmonics used as a reminder for numerical computation:

Ylo = cosh
Y1 = sinf cosy

3 ,, 1
Y 308 0 3
Yy = 3sin0 cosf cosy
Y3, = 3sindlcos2y

Y; = sin?0cos’y~cos®

5 3
=c0s30 - =cost

Yo = 3 2
Yy = -g-:inv(5cos20-1)coa¢

Yaa = 15sin%0 cos8 cos2y
Yas = 15sin30cos3y

&
il

%(35 cos*9 - 30 cos".ﬂ +3)

&
]

.;.(35 cos®0 — 15 cos 8 ) sinf cos

Yo = %(105 cos* 8 - 15)sin® 0 cos 2¢

Yis = 105 cosd sin®0cos 3¢
Y« = 105sinfcosdy

To calculate R; and @7, we use the expressions found previously :
R; = Rioo+ RnoYio+ BmYa + Bin¥n + RysYy

- B 1 1
¢r = % + —f.,;” + 5(BnoYno + Bm¥m) + z(BmYa + BisYiy)

Potential at order 1 and ¢ (intensity of the equivalent source for the bubble at order 0) are
computed using the expressions found previously:

¢ = -RiR
Bioo = —(R3R1e0 +2RoRoR100)

Bno = -%ﬁﬁm-ﬁgﬁoﬁno
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Bm = -? ilu - égéoﬁtu

R4 - 222 = 2.
B = —%&Rm - 5%&3131 + 53302

R4 - 2.2 = 1
By = -%Ru - ‘5333031; + aﬁsaz

@ which didn’t appear in the previous equations is calculated as follows:

dVg
7 = —=(Vo x 0 105
where Vg is the velocxty of the origin of the frame. The normalisation of w is given by the scale
Q such as : QTp = e. In the particular case where the origin of the frame is following a material
point in the initial flow field, the expression of w is easy to find : if we denote W,&; + V, the
velocity of this point,

P o W)+ e - £ | (106)
which gives: .
w=-sinf—— lz(W, + Voo cosO)(K - ﬂ (107)

Vo
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Figure 1a-¢: Fig. 1b and Fig. 1c show the geometry and flow field of the problem considered. The trajectory of the
bubble center along the headform (of radius 18 em) is indicated in Fig. 1b. The pressure (in Ps ~ y u'!) and the
velocity (in ma=! - right y axis) of the basic flow along this streamline, are plotted against the noa-dimensional time.
The {ree stream velocity is 1.15 ms~!. Fig. x.mmw@mmmuoz.m time between
0.1T; to 2T5. Bubble translation, rotation and re-entrant jet formation are clearly seen.
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Figure 2ac: Bubble contours at various times for ¢ = 0.15,0.3 and 0.6. Here the initial bubble radiue was kept
constaut at 1 cm, while tbe initial standofl from the head form was varied to change ¢. Increasing interaction is seen
with decreasing standoff.
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Figure 3a-c: Bubble costours at various times for ¢ = 0.15,0.3 and 0.6. Bere the isitial standoff distance { waa kept
constant st 3.333 em, while the initial radius was varied (o change ¢. Incroasing interaction is ssen with incressing
initial bubble size.




8 Conclusion

Application of the theory previously described has been made in the
case of a Rankine body, described by the initial flow potential :

Q

r

The broadth of the body at infinity is : R = 2,/53-
and the stagnation point occurs for: z = -§

do=Voz+

Figures 1,2 and 3 describe the conditions of calculations, and show results
for a frame moving with the equivalent point on the streamline at order ¢
(section 4).

Figures 4 show the comparison at order ¢ between results obtained in a
frame moving with the equivalent point on the streamline and a frame fixed
at the center of the bubble (section 5).

Figures 5 are results for streamlines at order 1 for the inner problem: they
encounter of the streamlines obtained in the potential ¢o + Peztdo, in both
cases of a growing bubble and a collapsing bubble (section 6).

Figures 6 are results for bubble shapes at order e2. They enable the com-
parison with results of order e. The frame center is moving as the equivalent
material point in the initial potential flow. The re-entering jet is rotating
increasingly towards the body wall ag ¢ grows. (z axis is directed towards
the trajectory, y axis is directed opposite to the body wall). Taking a frame
center moving as the bubble mass center would allow results closer to the
end of the collapse.
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9 Improvments

In order to describe the evolution of the bubble collapse longer, a
translation velocity of the frame should be introduced. The description of
the reentering jet has two causes: the bubble collapse is the physical one, the
movement of the frame is the second one. Using the fact that the frame is
moving with the equivalent point on the streamline or that the frame is fixed
to the center of the bubble are two different assumptions, and, therefore,
the results obtained are different. The most interesting description would
probably be to use a frame moving with a velocity belonging to the two
extreme cases we have selected. This has to be completed.

The introduction of the surface tension at orders ¢! and ¢? would also be an
improvment. )

Finally, results should be compared with those of the three dimensional
boundary element method (3DYNAFS).
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Figures 4 : Bubble contours at various times and for various values of
. angle ¥. Figures above are for ¢ = 0.3 and figures below are for ¢ = 0.6.
From the left to the right, we have : ¥ = 0, x/4,x/2. Top ones correspond
‘ " to a frame fitted to the equivalent material point on the stream-line, bottom
ones correspond to a frame such as the origin is kept at bubble center.
The standoff distance to the Rankine body wall is kept constant equal to
3.33 em.
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Figures 5 : Flow field stream-lines modified by the presence of the Lu.
ble, in the plane (Ozz).
) Figure above corresponds to a growing bubble, figure below to a collapsi:
. T one (¢ = 0.3, same case than figure 4 during the expansion and the collap
ing ).
Both have been computed using Euler’s methad.
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Figures 6: From top to bottom, bubble contours for ¢ = 0.3; 0.4 and 0.5.
3D caes aand left crom-cuts are coatours of order ¢2. Right crom-cuts are
coatours of order ¢. The standolf distance to the body wall has bean kept
coastans equal to 3.33cm. Bubbles radius have besn simed to At the different
values of ¢.

The jet is much stroager and rotates more at order ¢2; aleo remark that the
opposite face of the bubble Rattens.
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Intraoduction

Every liquid which is not completely pure contains many microscopic
bubbles. In an oscillating pressure field these bubbles can grow explosively
and collapse developing high pressures: this phenomenon is called cavitation.

Useful or harmful cavitation can arise in numerous applications, anti-
submarine warefare is surely the most famous one. In fact, naval research
programs include a great part on cavitation. Localization and identifica-
tion of submarine can be facilitated by cavitation, also erosion of propeller
blade is caused by cavitation. The power of underwater explosion can be
increased thanks to progress in control of the generated bubble collapse.
Cavitation is used for medical purposes like eve surgery. Industry needs
cavitation to emulsify a system of two immiscible liquids such as oil and wa-
ter. It is used in ultrasonic cleaning systems. Recently it has been reported
that a Japanese company plans to market ultrasonic washing machines and
dishwashers. The cavitation which appears sometimes in nuclear reactors
becomes very harmful for the cooling system.

Although cavitation mostly occurs in a cluster of microbubbles, most of
the models are developed using a single bubble dynamics. However most
of the time the interaction with the collapse of surrounding bubbles cannot
be neglected. Thus in this report we will try to modelise the dynamic of
a bubble cloud. Indeed the past studies proposed by G. Chahine [3] gave
us a model neglecting the compressibility of the fluid. The object of this
work is to introduce the influence of compressibility in the equations and to
compute the change using Chahine’s software.

The first part of this report shows the influence of the compressibility of
the fluid at order 0 using Keller-Herring equation [] and Chahine’s numerical
code (3] . In the second part we try to develop a model of bubble cloud taking
into account the weaknesses of previous studies: the medium is compressible
not only because of the fluid itself but also because of the presence of gas.
We will try to combine the approaches of Prosperetti and Lezzi [5] and that
of D’Agostino and Brennen [6].




1 Cloud behaviour in a slightly compressible flow

1.1 Asymptotic theory for bubble flow interactions

Consider a cloud of N bubbles of radius r§, i = 1,..., N immersed in a
liquid. The bubbles are initially assumed to be at rest and at equilibrium
with the surrounding fluid. The characteristic radius of the bubbles is ryo .
We denote the initial distance between bubbles i and j as I, which we take
to be of the order of the characteristic distance lp .

The asymptotic method that we have developed is centered on the fol-
lowing approach. The problem is addressed by a decomposition of both time
and space domains into multiple scales. For instance, the dynamics of any
bubble is obtained by considering an inner problem of scales ry, and T; (a
characteristic inner problem time scale), and a outer problem of scale /, and
T,. An asymptotic analysis of the problem can be developed when these
various scales are of different orders of magnitude. For the bubble inter-
actions the expansion may be realised when the scale of the inner problem
and the outer problem are really different. We introduce in this case a small
parameter that will be responsible for the perturbation. Let's call ¢ this
perturbation parameter: ¢ = J2. We assume in the followinge < 1.

In sections 2.2 and 2.3 the outer problem is associated with the macro-
scopic behaviour of the cloud. A bubble then appears as a superposition of
singularities of various orders, whereas the inner problem provides the mi-
croscopic details of the behaviour of the flow in the vicinity of an individual
bubble center B;. The boundary conditions at infinity for the inner problem
are therefore obtained at each order of approximation by the asymptotic
behaviour of the outer solution in the vicinity of B;. Thus if one knows
the behaviour of all bubbles except B;, the motion, deformation and pres-
sure field due to this cavity can be determined by solving easier linearized
forms of the equations. At the lowest order, ¢ = 0, each bubble (of index
i) behaves spherically. The combination of all these first approximations of
each inner problem provides a description of the whole first order flow field
(i.e. a distribution of sources or sinks representing all bubble oscillatioas).
The behaviour of this outer flow field in the vicinity of each bubble sets the




boundary conditions at infinity at the following order of approximation, ¢,
for the corresponding inner problem. he same process is then repeated for
the successive orders.

1.2 Incompressible fluid

The study of the cloud in an incompressible fluid, using the preceding
method, has been done by G. Chahine, K. Kalumuck and T. Perdue (3] .

For this work we will use the numerical codes they have created where
tlLey neglect not only the viscosity and the compressibility but also the heat
and mass transfer. The great contribution of these reseachers was to discover
that until order O(e3) the problem of the cloud was similar to a problem
of two bubbles: the bubbie ¢ and an equivalent bubble G; (figure 1). This
constatation simplifies a lot the problem without affecting the precision of
the calculation.

figure 1:  Multibubble Interaction Equivalence Concept




During this study we showed using the work of Takahira and Akamatsu
(7] that at higher orders the above approximation was not justified. We
will not explain all the resolution of Chahine’s work, but we just give the
most important equations to understand the goal of the work. Thanks to
the concept of equivalent bubble the equations are easier, at least for the
lowest orders. Neglecting the compressibility Chahine considers two different
problems: the inner and the outer problem. In the next section we will come
back on this assumption.

The equivalent bubble is centered at G;. The growth rate and position
of this equivalent bubble are determined by the distribution and the growth
rate of the other cavities. In general, this fictituous bubble equivalent to the
“rest-of-the-cloud”, and the corresponding “cloud center™ and “equivalent
bubble intensity” are different for each bubble. If §;; is the angle between the
centers’ direction B;G; and the direction of a field point B; M, the equation
of the surface of the axisymmetric bubble B; can be written in the form:

R(8ig6t) = ai(2) +eai(t) + & [ai(2) + £i()-cosbiy
+€ [al(t) + fi(t).cosbiq + g4 ()P (costiy)| + o)
where P; is the Legendre polynomial of order 2, and argument cosd;;. The

components, ai, fi and g}, satisfy linear second order differential equations
which can be written in symbolic form as follows:

D, (y,") =) (%:;) F} (y{;,. . .,y,';_l) Py (costyy) .

Here D, (y:) represents a differential operator of the second order in
time acting on the radius component yi, (one of ¢, f% , g&) of the bubble i;
m is an integer indicating the order of the spherical harmonic.

The behaviour of B; can be computed by integration of the obtained
system of differential equations using a multi-Runge-Kutta procedure. the
behaviour of the whole cloud is thus obtained. Earlier studies have shown
that collective bubble behaviour can have a dramatic effect on both bubble
growth and implosion. Specifically, bubble growth is inhibited by bubble
interactions, while bubble collapse is enhanced. This cumulative effects
come from the fact that the interaction reduces any driving pressure drop
as a result of the other bubble growth, while it increases thz collapse driving
pressure as a result of the other bubble collapse. Due to the cumulative
effects of the collapse of all the bubbles in the doud, each bubble ends its
collapse under the influence of a pressure which is orders of magnitude higher
than that for an isolated bubble.




1.3 Slightly compressible fluid.

We will not go into the details of obtention of the equations which we will
do in the next section. We will say that the component a(¢) of the bubble
i(r = R(0;,6,t) = af(t) +eai(t) +... ) verifies the Rayleigh-Plesset
equation (Equation 1).

., 3.
p[aa+-2-¢2] = P8 - Poo (1)
where pp is the pressure at the bubble wall:
V hj
P8 =Pv+Pyo (79) ~Co, 2

where p,q and Vg are the initial gas pressure and volume respectively, o is
the surface tension, C the local curvature of the bubble, V' the instantaneous
value of the bubble i volume, and v the polytropic constaat, with 7 = 1 for
isothermal behaviour and v = 1.4 for adiabatic conditions. Here p,9 and Vg
are known quantities at ¢ = 0.

In fact introducing the compressibility of the fluid at order 0 modifies the
equation of the radius of the bubble. The classical Rayleigh-Plesset equation
becomes of the Keller-Herring form (Equation 3).

This equation can be written as

n[(1-§)aa+;:,‘- (1-%)&2] = (“‘%"'57;')(” ~rs) (3)

where c is the sound speed.
To nondimensionalize this equation we need to introduce a new pertur-

bation parameter 3 which is a Mach aumber:

_ r/T:
M= - @

where cres is the sound speed in the fluid at rest.




Let’s call

v = (/v

P = ( Pow - pv) /AP

w = (reAP) [20 : Weber number
AP = max | poo(t) ~ Poe. |

a = a(t)radius of the bubble at time t

POe initial pressure at infinity

ag initial radius of the bubble

Equation (3) becomes:

@-Mﬂﬁ+g@-ua¥=

(1+ M3) [7(7-1-31aa)+2w-1 (%-%—ﬂ%ﬁ+u§)

RS

=Poo(t + M3) + fo..] ()

Taking M = 0 in (5), we find the classical equation of Rayleigh-Plesset (1).

This equation verified at order ¢? by the component of the radius ag of
each bubble shows that the compressibility at order Af is only a correction
of the Rayleigh evolution of each bubble. As we know that the behaviour
of each bubble has a cumulative effect on the collapse of all bubbles, we
may predict that the compressibility can have a strong effect on the cdoud.
To verify this assumption and to know how strong is the effect of the com-
pressibility on the cloud, we have investigated the effects of this equation on
Chahine’s code. In most figures shown below the bubbles are in the same
plane OYZ. This simplification could seem useless if we know how Chahine’s
code proceeds: each bubble is computed using the equivalent babble con-
cept. One could have used more general cases. Our choice was motivated by




two reasons. The first one is because it is easier to understand the changes
of the cloud seeing the all bubbles together. The most accurate representa-
tion is to cut the cloud by a plane including all the shapes. Thea one has
only to compute the translations and the rotations of all the bubbles. The
second reason is that we could compare the results of this cods with those
obtained with a completly different method which accounts for large bubble
deformations. Indeed Dynaflow Inc. is working on a 3D code (3DynaF§).
Most of the studied cases were in a plane.

1.4 Figures:

Figure 2 shows R(8;, = 0,t) versus time for one bubble in a 6-bubble
cloud. The bubbles are at equilibrium at ¢ = 0 when they are subjected to
a sudden pressure drop. The bubbles have aa initial radius of 0.01 cm and
are arranged at equal distances from the origin aloag the three coordinate
axes: :

Pio = 104m

e = 0.07

o = 728x10* N/ m
P = Bagb = 2

w = -'3%‘5 = 680

AP = max|pe(t)~ po,| = 10° Pa




The solid line indicates the incompressible solution. Also plotted is the
corresponding curve for M = 0.01 (small dashes), M = 0.03 (small dash-
dot), and M = ¢ = 0.07 (dash dot). Even if for M = ¢ our approximation
is not completly justified this figure gives a good idea of the effect of the
compressibility. Not only the compressibility reduces the magnitude of the
radius variation but also it changes slightly the frequence of the oscillations.
This is fundamental from an acoustician point of view.

2.6 et

0.6 + 4 -4 4 .
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Figures 3, {, 5, 6 shows a 6-bubble cloud evolution in a liquid more or
less compressible. The bubbles are at equilibrium at ¢ = 0 when they are
subjected to a sudden pressure drop. The bubbles have an initial radius
of 10~3 m and are arranged in the plane OYZ symetricaly with respect of
the two coordinate axes: figure 2 shows R(9;, = 0,t) versus time, the solid
line indicates the incompressible solution which breaks down at ¢t = 3.2 .
Also plotted is the corresponding curve for M = 0.08 (small dashes), and
M = ¢ = 0.2 (dash dot). Figure { shows growth and collapse of the bubble
cloud in an incompressible fluid. Figure § shows growth and collapse of the
bubble cloud in a slightly compressible fluid: M = 0.08 . Figure 6 shows
growth and collapse of the bubble cloud in a compressible fluid: M = ¢ = 0.2

Pio = 103m

3 = 0.2

o = 728x10"2 N/m
P = %-L. * = 2

w = 48F = 680
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The figures 7, 8, 9, 10 shows a 4-bubble cloud evolution in a liquid
compressible or not. The bubbles are at equilibrium at £ = 0 when they are
subjected to a sudden pressure drop. The initial radius of the big bubble is
5% 10~3 m and 103 m for the small one. They are arranged in the plane
OYZ symetricaly with respect to the two coordinate axes:

Figure 7 shows R(8;; = 0,t) versus time of the big bubble. Figure &
shows R(0;, = 0,t) versus time of the small bubble. The solid line indicates
the incompressible solution. Also plotted is the corresponding curve for
M = 0.2 (small dashes). Figere 9 shows the cloud in a compressible fluid
M = 0.2. Figure 10 shows the cloud in a incompressible fluid. On this
figures we observe clearly the formation of the jet. The collapse in the
compressible fluid is slightly delayed.

Tbe = 5x10™3m
e = 0.25
o = 7.28x102 N/m
P = &ﬁ& = 0.5
W = 5;?-}: = 680
17 . 4
1.6 J
‘.s .o.. r
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1.1 <
‘¢° [ 3 s
0 ] 2 3 ¢
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These following figures show a 12-bubble cloud in an incompressible fluid.
All bubbles have not the same initial size. Initial radius of big bubbles
is 5 x 10 m, initial radius of medium bubbles is 2.5 x 103 m, initial
radius of small bubbles is 10~3 m. The reason for taking different sizes of
bubble is that the code is limited by the collapse of bubbles. \ith same
size bubble cloud the collapse of bubbles which are inside the cloud appears
too early. Then the collapse of the cloud is not interesting. Thus we have
chosen a bubble cloud with two big bubbles inside and four small bubbles
at extremities. The bubbles are at equilibrium at t = 0 when they are
subjected to a sudden pressure drop.

Py = 5x103m
€ = 0.25
4 = 728x1072 N/m
P = Balk = §5x10-3
W%
0.04 —t—
0.03 + 4
002+ @ ® ® ® +
0.01 + {
0.00 5 +
8
-0001 ™ -’
-002+ @ (9)] o
13 12
-0.03 + +
-0.04 L 1 ) 1 1 : [l

~0.04 -0.03 -0.02 =0.01 0.00 0.01 0.02 0.03 004

13




0.005
0.004 ;
0.003 1

0.002

0.001

0.000

-0.001 {

-0.002 |

-0.003

-0.004 ;

L

] t L

-0.005

0.0050.00€0.0070.0080.0090.0100.01 0.

Bubble 7

0120.0130.0140.015

0.004\.\
0.003 J
0.002 |
0.001 ;
0.000 ;
-0.001 1
-0.002 ;

-0.003 |

1] | (] ] !

-0.004

0.026 0.027 0.028 0.029 0.030 0.031

Bubble 8

0.032 0.033 0.034




-0.017 ; +

-0.018 |

-0.019

-0.020 |

-0.021 1

-0.022 1

-0.023 T +4

-0.024 s - e - . ; .
0.006 0.007 0.008 0.009 0.010 0.011 0.012 0.013 0.014

Bubble 11

-0.018 +— + — }

-0.019 ;

-0.020 +

-0.021 1

T™

-0.022 4- -+
0.028 0.029 0.030 0.031 0.032

Bubble 12




These figures represent the same cloud with the same initial conditions
but in a compressible fluid M =¢=0.25.
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2 Dynamic of the cloud

2.1 Problem statement

The reader should have certainly noticed the different approximations made
in the previous problem. In this section we try to take into account most
effects of the compressibility. The resolution of the "inner” and the "outer”
problems will be very similar to Chahine’s study, the difference is that we
include the compressibility of the fluid. However, a very important change
occurs when compressibility is included. The pressure imposed at infinity in
the "inner” and "outer” problems now depends on the local volumic mass
i.e. at the scale of the cloud on the void fraction. Therefore at the bubble
scale or at the cloud scale the fluid has to be considered differently. In fact
we need to consider two different global scale: the microscale problem and
the macroscale one. In the first one the fluid is seen as a compressible fluid
with bubbles inside it, in the second one the liquid is a two-phase medium
and the compressibility comes mainly from the presence of the gas phase
and not from the compressibility of the fluid itself.

istic s .
microscale{ 20 ™ I
outer: [,,7T,

coud: [,T.

oscale{ far away: I, Ty
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inner: ry, T:

microscale ¢

macroscale !

far amay: [, T,
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2.2 Microscale problem

The microscale problem is a zoom on the bubble cloud and it can be
decomposed into an “inner” and an “outer” problems. Thus there is not a
single "inner” problem but as many "inner” problems as there are bubbles.
To each "inner” problem corresponds an "outer” problem.

At the length scale of the microscale problem each bubble being far away
for other bubbles, sees a compressible liquid. Explicit expressions for the
sound speed, c. and the enthalpy, k, will be needed. To this end we make
use of an equation of state of the modified Tait form for water:

p+38 s \"
= 6
Pref + 8B (p,,f) (6)

Here the reference is chosen in the undisturbed liquid (subscript ref). The
values B = 3049.13 bars, n = 7.15 give an excellent fit to the experimental
pressure-density relation for water up to 10° bars (Fujikawa and Akamatsu
1980). With (6) we find the following relation:

o _ a_np+B)
P=e=X2td (7)

¢, = n(Pres + B)/Pres i8 the square of the undisturbed speed of sound in
the liquid.

2.2.1 “Inner” problem

Mathematical formulation:

Let's call p(M,t) the pressure at a point M in the liquid at time ¢ in the
"inner” problem. Let’s call pi () the pressure at time ¢ at infinity at the
scale of the "inner” problem. Let's call p°( A, t) the pressure at a point A
in the liquid at time ¢ in the "outer” problem. Let's call pd (¢) the pressure
at infinity at the scale of the "outer” problem. The value of pi,(t) is given
by the boundary condition of the "outer” problem:

21




Poo = lim p'(M, ) = lim p(M,?) @)
Let’s take the nondimensionalized pressure parameter AFP;:

AP = max|p'(M,¢t) -2l ()]

We denote 7= "_M&‘)?T._lzl © oo = Pc-(‘)-.».‘.

Let's call nf= —AE— and assume that n; < 1.

Prat ref
We have:
. -4 . -d
1 _ 1 (#F+B\*_1 (1+P"Pnl) .
P pref \Pres + B Pref Pref +B
-~ -1

1 n i
= ;':f' (1 + ——Tp"! - (P "Pnf))

We can do the following expansion for 7 < 1 up to order O(nf):

1 1 - ntl._
2= (1t + 2t 4 ot )

=pnlf(1+n§’kz)-é

Thanks to this expansion we can express A‘ up to order O(nf).

B = nddy (5= fo = 3 (- ) o+ = Pl 4 ota) (10
Using ¢he same kind of expansion we get :

= 22204 D) 2 dnlp— pry) + 5l + B)
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l=1/n

3
c“s-’—"%(l-{-ﬂiﬂ?): 2 (1+npn? (11)

1 _ 1 . 4
;5- = ?'-:;(14'(1 n)pq,

+3 (1= m)(1 = 2m)5nd + ofn)) (12)

First, we will consider the expansion until order o(n?), equation (11) and
(12) become:

= = -él:!-(1+(1-n)in.-’+o(q?)) (13)
K = iy (5= fu =g (7 - 7)1t + o) (14)

Motion equations

The bubble behaviour and the motion of the liquid in the neighborhood
of each bubble is governed by the equation of continuity

8p D

§+v(pu)-o, (15)
and the momentum equation

p(%+u‘vu‘)+vp‘=o. (16)

Furthermore with the assumption tk2t the motion is irrotational, we may
introduce a velocity potential ¢ such tha: u* = V ¢ . With this definiton
equation (15) may be rewritten as

1 [on i _
?(7‘?+v¢vn)+v=¢_o. (17)

while equation (16) may be integrated once to give

2




9¢

Bt -|V¢|’+h'-o (18)

To complete this mathematical formulation we need the kinematic boundary
condition at each bubble wall » = R¥(t)

for each bubble i : (V ¢ ), g = Lgiles. ' (19)

where n' represents the :‘ormal at the bubble i surface , » = R'(t) is the
equation of its surface, e,. is the radial vector in a frame linked to the center

of the bubble .
The pressure in the liquid at each bubble B; surface:

I | J VO‘ ! cz 20
Pa.-—Pv""Pgo W =L, ( )

where p and V{ are the initial gas pressure and volume respectively, o is the
surface tension, C‘ the local curvature of the bubble, V¥ the instantaneous
value of the bubble ¢ volume, and v the polytropic constant, with 1=1 for
isothermal behaviour and v = 1.4 for adiabatic conditions. Here p' and V§
are known quantities at ¢ = 0. The curvature C*and the normal n' te the

surface B* are given by:
; i . L VB
C'=Vna ; “-IVB"I' (21)
Nondimensionalisations

In the inner problem the parameters we will use for the nondimension-

alisation are :
r = r,F Py : the initial characteristic bubble radius
max | p(M,¢t)-pi,| = AP, AP, : pressure chaage scale
t = Ti T:: the characteristic collapse time
¢ = ¢i.¢ ¢ : inner velocity potential scale

?
™ Pref "ref

M 34—‘: M : Mach aumber
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Wewill ie: - 32, = (5~ 5 )5+ )

Previous equations (17), (18), (19) become:

:‘}V’h
%

n?(%%@-ﬁw)+;§‘:(va.V)@—m)+0(o.-*)=o (22)
5%, ;%:vih

Metetl =) [1 = 225+ ) 4 0 ()] =0 (23)

b (o ; Tiy i .
;-; (V é.n )"5‘-(') T g o for each bubble ;. (24)

The least degeneracy of equation (24) gives the arder of g; :
L}
$i = T.

(25)
The least degeneracy of equation (23) givea the order of T; : é:-r),?c,’,, =1:
Ti=my 2L (26)
AV
which gives the value of 7
2
(.."‘.o....l_) i o
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it means that 5 is exactly the previous Mach number A{. Thus the assump-
tion we made about 7; is justified for a slightly compressible fluid.

The inner problem equations are:

V’¢+M’((:t +(vsé. V))(p p,.))+o(u‘) 0 (28)

‘;f 3171+ hu) [1- 300 G+ )] +0 (M) =0 (29)

= SRt
(v ¢'.n)hﬁm ot()e,. n' for each bubble i. (30)

.1 AN
A Ak ( = et +2lo (V') - C‘c) , at each bubble wall (31)

32.2.2 Outer problem
Mathematical formulation:

Let’s call p°(M,t) the pressure at a point M at time ¢ in the outer
problem. Let’s call p2,(t) the pressure at time ¢ at infinity at the scale of
the outer problem. Let’s call p(A(, t) the pressure at a point A( at time ¢ in
the cloud problem. The value of 3 (t) is given by the boundary condition
of the cloud problem:

7o = lim (M, ) = lim (M, ) (32)
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Let’s call the scale pressure parameter AP,. We have

pM,¢) -~ Pres . Peo(t) = Pre
iy v e @)

Let's call rp}:;’ﬁ{gz we assume that 5, < 1.

We have like in the previous section:

1 _ 1 (p+p \2

- TN e —p——- —-

P Preg (Pn[ + B) (1 + npm, )
We can make the same

A° and ¢°

1L nilp ‘
> = g (1708 + 2t o) (36

expansion for 1, < 1 up to arder O(n}) aad we get

Thankxtothisexpansio;wecanupmd h° up to order O(n),

[

B = e, (p -fo =3 (7P - 72) o2 + 211 Ly +°(v:)) (35)
and c® up to order o(n).

= = E—f—/—(l-{-(l-n)itﬂ

(=) (1=~2n) 2 g8 + on)) (35)




First, we will consider the expansion until order O(n3):

= = ;31:;(1+(1-u)in3+0(03)) (3n)
B = e (5 -3 (5 L) 2 + o) (38)

Motion equations

With the assumption that the motion is irrotational, we find again the
same motion equations:

c—i;(%?+vwlu°)+V’¢=o. (39)
8¢ l 2 o _
Stz Vel j-h =0. (40)

In this case the kinematic boundary conditions derived from the fact that
there are singularity points located at the center of each of the bubbles.
These singularities are sources to the first order of approximation.

Nondimensionalisations
In the outer problem the parameters we will use for the nondimension-

alisation are :
R

P(M:t) = Pres
t

LR I, : the characteristic distance between
two bubbles

AP, AP, : pressure change scale

T,f T, : the characteristic collapse time

b0 - ¢ . : outer velocity potential scale

PrefCrey

/T
Cref

R &
o




Previous equations (38) and (39) become:

s+ 43440 9)n
2[5 (2o + ‘°(v¢ v) & -5L)
~(-np (g3 Q(V¢-V))(p—i~)J+0(ﬂ.)}=0 (41)
T8t'+;§|v¢lz

Wcey (- ) (1 - FE0+50)) +0 () =0 (42)

ie.

-n2 %{r,:: ; =+n3(V . V)}(p’ -53,)

e -n)ﬁ{ LE (V. V)} (f-i«.)] +0(nd)=0 (a3)

a?q.lﬁ’!ﬁ |IVEPR +
%(ﬁ-iw)(l—éwnw))w (1) =0 ()
the matching condition is :

lim ¢, ¢ = Jim ¢; § (45)
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Lim AP, 5= lim AP (46)

The least degeneracy of equation (44) using the kinematic boundary condi-
tions gives the order of ¢, :

o =¢ %.g‘ = ¢ (47)
The least degeneracy of equation (42) and (43) give the following order:

’73’3 - 2_Ti__ -

#T, ~PToe = 8)
and

T,ngc,’.,, 72T,

% T Te “)
thus o

Mo = Y (50)

T, = M = Lo (51)

¢ Cref
The previous equations (42) and (43) become:

vié + {-8-.+u¢’(v é. V)}(j-i,.)

%
- [% {-%4-11.’ V. V)}(i’ -2)
el -n)i{§t=+u¢= (v;.V)}(i-ie.) +0(ey =0  (52)
%:L-;uc’ 21
+ (5~ fu) (1~ M6 B+ 5)) +O(e4) =0 (53)




i.e.:

+Me? [(w V) (7 - Fuo) - 1.‘?(22-4’3-24,(1 n)p2 = F0) f«»)]

+0(e*) = 0(54)
¢
% + EM | Ve
+ (= 5) (1- 3 M3 G+ 50)) + O() =0 (55)

But the equation (50) shows that the speed at this scale is of order c,of
it doesn’t agree with the previous assumption. The perturbations don’t
include shock wave. Thus we need to use the second order of degeneracy.

% - le (36)

ij:?.f - % 3 _T_: (57)
thus

T =e¢'M = %‘?f (5)

e

The outer problem equations are:

v=¢+c4u*{ +(V§. V)}(i o) +0(c") = 0 (60)
B L1961+ (=) (13U G+ 5)) +0(s) =0 (81)
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i.e.:

Vig +0(ef)=0 (62)

. P -
3 IVEP+G ) +0(e%) =0 (63)

2.3 Macroscale problem

In the macroscale problem we consider the medium as a continuous mix-
ture of liquid and gas. This is the classical point of view of two-phase flow
studies. The compressibility of the liquid can be neglected with respect to
the compressibility duc to the presence of the bubbles.

2.3.1 Cloud problem
Mathematical formulation:

The medium is composed by a liquid and a gas, the void fraction is
a(M,t). The liquid and the gas are assumed inviscid and incompressible,
with a respective density ps and p,. We assume that no bubbles are created
or disappear. The volumic mass of the medium is:

p = pr(1 - a(M,t)) + p; a( M, ¢) (64)
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The void fraction a{M, ! is taken in the small volume element dV = 3xI3
which contains n{ M) bubbles at the point M, [, being the scale of the outer
problem in the microscale. The order of a( M, t) is:

a(M,t) = neda*(M,t) (a(M,t) € 1fore<l). (63)
where n is the average value of n(M) in the cloud. a*(M, t) is of order unity.

Thanks to the work of Van Wijngaarden [4], we know how the sound
speed is modified in a two-phase medium. Under the further assumption
that gas and fluid move at the same velocity, the mass of gas in a unit mass
of the mixture is constant,

pga(M,t)
ps(1 - a(M,t))
In a homogeneous mixture, as envisaged here, the pressure p in the mix-

ture equals the pressure p, in the gas, which is at constant temperature T
proportional to p] (isentropic case),

= constant. (66)

Pra(M,t)
P!(I - G(M, t))
For the sound velocity c, we have from equation (63),
da(M,t)

£ constant. (67)

L doy 95 ¢ (o, -
ie.
1 _(1-a(M,t) , a(M,t) da(M,t)
2= B - =g (69)
Let’s note a(M,t) by a. Differentiation of equation (65) gives:
dp; _dp, )
da = afl - —~L -] . 70
oft - o) (22 - & (70)
Differentiation of equation (66) gives:
dps dp)
da=a(l-a)f =L -2 71
ol -e) ( P TP (T1)
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Using (69) and (70)

- 2 -— -
iz=(1 2m) +£2+p/a(1 a)  ppel-a) (12)
c ¢t C, 1 pr G

We have assumed that pp;7 = constant i.e.:

dp 1 »p
—_—l =L T
dp C; ¥ ( 3)
thus we can write :
1 1-a)? 2 1- 1-
'7=(—'?‘i+a—z+&a( 2a)+££a(cza) (74)
c c} e py o Ps 2

Using equation (73) the speed of sound in a bubbly fluid is lower than the
speed of sound in a pure gas. We know that a ~ ne3, for water ¢} ~ 25¢,

and ps ~ 1000p,. With the assumption that a > (pyc} / psc}) ie. ne® >
1/25000, the speed can be approximate in an isentropic case by :

_ 9 _ gt
¢t = dp ~ ps (1~ a(M,t))a(M,t) (73)

According to equation (66) we have :

_p(l-a)T
p=P—0g (76)
P, is given by the initial conditions.
= _% Y’
Po = pa (722-) ()

where poo is the pressure in the fluid at rest at ¢ = 0 and a, is the void
fraction in the bubble cloud at ¢ = 0. Then

- 7P, (1 - a)‘y-l
= pr  al¥ (%)
Moreover
p=rps(l-a)+pa=ps(1- ne’a”) + pyne’a” . (79)

With the previous assumption we may approximate p with:
p~ ps (1 -ne*a’) (80)




Motion equations

Let’s call p°(M,t) the pressure at the point M at time ¢ in the cloud
problem. Let’s call p5 (t) the pressure at time ¢ at infinity at the scale of
the cloud problem. Let’s call p/(M,¢t) the pressure at the point M at time
t in the far away problem. The value of p5 (t) is given by the boundary
condition of the cloud problem:

p:o = ru_méopc(uo t) = P_{%PI(Mt t) (81)

where C is the fictituous center of the bubble cloud. In our problem where
the fluid is at rest the pressure p5, is a known of the problem, this is the
pressure imposed on the bubble cloud. We find using (76) and (77) that

Vp=-pAV a (82)
. The medium behaviour is governed by the equation of continuity

%+V(pu)=0, (83)

where u is the speed of the medium, and momentum

p(%':+uVu)+Vp°=0. (84)

These equations give

1 (8a
Vu—m 3{"'1&70)-0 (85)

3
¢ T l_aVa-O. (86)

We may consider the cloud like a bubble with its own oscillations, the
boundary conditon is also

(w-)rmaty = 2o Ler. (1)




where n represents the normal at the cloud surface , » = A(t) is the equation
of its surface, e, is the radial vector in a frame linked to the center of the
cloud .

Nondimensionalisations

In the cloud problem the parameters we will use for the nondimension-

l.r* . : the characteristic distance of the bubble cloud

r =
t = T.t* T.: the characteristic time of the bubble cloud
u = U.u"
a = nda°

We will use the followinig expaasion for 1/25000 € ne® < 1:

T = (1-nfa) " = 14ne " + 00 (88)
Expansion of ¢%:

1P, (1 - a)7?

o @it

;1;%‘33':‘ [1 +ne((1-7)a" +7a7) + 0(“)]

= ;ﬂ’p%c" (89)

where ¢ is of order unity. Previous equations (84) and (85) become:

& =

- 1 nﬁlcaa‘ - ol
v"'1-n¢3a-(U,T,a¢-+“‘é"'v“)"° (90)
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¢Var
L % gy T=ne o a*" =0 (91)
The least degeneracy of equation (89) gives the characteristic speed U:
L
U.= m’i , (92)

and the least degeneracy of equation (90) gives the characteristic time T,:

Ine3p,
Te=1,/—L, 93
-3 1 YP” ( )

Thus equation (89) and (90) give:

da"
- 3 - 4 3. -}
Vu-(l-l-nt a+0(¢))(—-—i+ruu.7a)-0 (94)
%;'-+m3u'.v u'-—(l+n¢3 a'+0(e‘)) Va' =q. (95)

ie. up to order oc):

vu-—%-:-'+o(¢)=o (96)
%—} ~ eV a4 ofe) =0, (o7)
If ¢* was constant, we would find the classic wave equation:
2.,
V2 - %:—7 =0 (98)
or
Vig® - :j‘%—. =0 (99)




2.3.2 Far away problem:

This problem is aasier, the cloud is only a small disruptibn at the center of
the frame. We just need to write the equations of the outer problem of an
incompressible fluid with a single bubble.

V=0 (100)
and the boundary condition: '
lim V¢=0 (101)

2L, (t) is given by the user.

Conclusion:

The first part of this report has showed how strong could be the influence
on a bubble cloud of a slightly compressible fluid. The second part has
lightened all the assumptions made in the first one, and raised the equations
we need to solve numerically for the problem which takes into account all
the effects of the compressibility.

At ¢t = 0, we know the pressure every where in the fluid. We may solve
step by step, the inner, the outer, then the cloud and at least the far away
problem. We get the behaviour of the cloud at time d¢ i.e. the value of
a( M, dt) every where in the cloud and the pressure at this time. We need to
go back step by step to the inner problem and we obtain the motion of each
bubble. This recurrence is easy to compute using the concept of equivalent
bubble.

In fact the main application of this modelisation is to know precisely the
growth and the collapse of the bubbles in the cloud near a certain profile.
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The final stage of the collapse of a cavitation
bubble near a rigid wall
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During the collapse of an initially spherical cavitation bubble near a rigid wall, a re-
cntrant jet forms from the side of the bubble farthest from the wall. This re-entrant jet
impacts and penetrates the bubble surface closest to the wall during the final stage of
the collapse. In the present paper, this phenomenon is modelled with potential flow
theory, and a numerical approach based on conventional and hypersingular boundary
integral equations is presented. The method allows for the continuous simulation of the
bubble motion from growth to collapse and the impact and penetration of the re-
entrant jet. The numerical investigations show that during penetration the bubble
surface is transformed to a ring bubble that is smoothly attached to a vortex sheet. The
velocity of the tip of the re-entrant jet is always directed toward the wall during
penetration with a speed less than its speed before impact. A high-pressure region is
created around the penetration interface. Theoretical analysis and numerical results
show that the liquid-liquid impact causes a loss in the kinetic energy of the flow field.
Variations in the initial distance from the bubble centre to the wall are found to cause
large changss in the details of the flow field. No existing experimental data are available
to make a dircct comparison with the numerical predictions. However, the results
obtained in this study agree qualitatively with experimental observations.

1. Introduction

Cavitation is an important engineering phenomenon that commonly occurs in fluid
machinery, piping systems, liquid jets and a variety of boundary-layer flows. The major
harmful effects of cavitation are erosion, noise and decrease in fluid-machinery
efficiency (Hammitt 1980; Arndt 1981). In an effort to understand the fundamental
physics of cavitation phenomena, a number of researchers have investigated the growth
and collapse of individual bubbles near rigid boundaries. Experiments have been
performed by Benjamin & Ellis (1966); Gibson (1968); Lauterborn & Bolle (1975);
Chahine (1979, 1982); Gibson & Blake (1982); Tomita & Shima (1986); and Vogel,
Lauterborn & Timm (1989). Using spark-generated or laser-generated cavitation

. bubbies and high-speed photographs it was found that, once generated, the bubble

grows (o a maximum size, and then starts to collapse, inducing a radial flow directed
toward the bubblc centroid. As the collapse proceeds, the surface of the bubble farthest
from the wall moves much faster than the surface closer to the wall. This asymmetric
motion creates a wall-directed re-entrant jet as the volume of the bubble decreases.
Eventually, a liquid-liquid impact occurs between the front of the re-entrant jet and the
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opposite side of the bubble. During this impact process, the jet penetrates the slower-
moving fluid close to the wall.

Numerous theoretical and numerical studies of an individual bubble collapsing near
a rigid boundary have also been made (sec review articles by Prosperetti 1982; Blake
& Gibson 1987). Because the available theoretical analysis is limited to asymptotic
studies in which the deformation of the bubble is confined to a small perturbation
range (Chahine 1982), numerical simulation has become an important tool for
investigiting the detailed physics of this phenomenon. Using a finite-difference
approach, Plesset & Chapman (1971) conducted the first fully numerical study. Later,
Mitchell & Hammitt (1973) used a modified Marker-and-Cell method to simulate
similar cases. An approximate integral-equation approach was introduced by Bevir &
Fielding (1974). In this work, sources and doublets were distributed along the axis of
symmetry inside the bubble. Though this method requires less computational effort
than the finite-difference method., it failed to simulate the formation of the re-entrant
jet. Gibson & Blake (1980) and Blake & Gibson (1981) modified this method to study
the bubble collapse near a rigid wall and a free surface. Based on Green's theorem and
the direct boundary-integral approach, more detailed studies of cavitation bubbles
near rigid boundaries have been presented by Guerri, Lucca & Prosperetti (1981);
Cerone & Blake (1984); and Blake, Taib & Doherty (1986) for axisymmetric cases and
by Chahine & Perdue (1988) and Chahine (1991) for three-dimensional cases. The
numerical calculations of the migration of the bubble toward the rigid wall, the profiles
of the bubble and the formation of the re-entrant jet were found to be in excellent
agreement with experimental observations (Blake et al. 1986).

Once the re-entrant jet begins to penetrate the opposite side of the bubble, difficulties
in experiments, theory and numerical calculations appear. Most experiments use
photographs to track the bubble surface. Unfortunately, the jet impact process occurs
inside a toroidal bubble and the images are consequently blurred and difficult to
interpret. Theoretical analysis of the jet impact and penetration process is difficult
because of the nonlinearity associated with the large motions of the bubble surface.
Benjamin & Ellis (1966) postulated that upon jet impact the bubble must be
transformed into a vortex ring bubble in order to conserve the Kelvin impulse of the
flow. Several attempts have been made to simulate the jet impact and penetration
processes numerically. Rogers et al. (1990) and Szymczak et al. (1993) have assumed
an inviscid incompressible flow and used a finite-difference field approach. They
demonstrated the capabilities of the method by simulating a single bubble collapse near
a rigid wall including the impact of the re-entrant jet. Owing to limits in computing
time and memory, the calculation was done at low resolution. It was therefore difficuit
to resolve the impact interface and there was a non-physical energy loss before impact.
Attempts to use the direct boundary element method without modification to simulate
the penetration process have failed. The failure is due to the inherent mathematical
degeneracy of the conventional integral equation under this circumstance. In an effort
to avoid this degeneracy problem, Best (1993) devised a two-phase procedure to carry
out the calculations with the conventional boundary integral equation. The first phase
includes the growth and collapse of the bubble up to the point in time when the north
and the south poles of the bubble meet. Then, in the second phase, a ring bubble is
assumed with a continuous velocity field everywhere in the fluid. The initial conditions
for the ring bubble problem are based on the fluid motion just before impact and some
ad hoc assumptions about the geometry of the ring bubble and the fluid velocity in the
vicinity of the impact surfaces. The entire impact process occurs instantaneously in this
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model. A similar two-phase method with a boundary integral approach was also
reported by Lundgren & Mansour (1991) for the simulation of a vortex ring bubble.

In the present paper, the physics of cavitation bubbles is studied with a new
boundary-integral technique that can compute the growth and collapse of the bubble
including the impact and penetration of the re-entrant jet. This method allows for a
continuous liquid-liquid impact as the two curved sides of the bubble coilide, the
penetration of the re-entrant jet into the fluid close to the wall and the formation of a
shear layer along the impact interface. The physical and mathematical modelling of
these processes is presented in §2. This modelling uses modified conventional and
hypersingular boundary integral equations with non-regular boundaries to form a
well-posed problem for times before and during jet impact and penetration. The details
of the numerical scheme are discussed in §3. This scheme i< verified and tested in §4
by computing static and dynamic problems with known solutions. The results of
simulations are presented in §5. These results include velocity and pressure fields and
bubble proliles. Calculations showing changes in the circulation and energy of the flow
during jet impact and penetration are also computed and discussed in this section. The
concluding remarks of this study are given in §6.

2. Mathematical formulation
2.1. Physical assumptions, definitions and coordinates

In the present paper, as well as numerous previously published studies of bubble
collapse, the fluid motion is treated by potential theory. Viscous effects are neglected
on the grounds that the timescale for viscous diffusion is much longer than the timesale
for the collapse. Thus, the vorticity generated at the boundaries does not have sufficient
time to diffuse into the flow. The extension of these studies to include the penetration
phase of the motion does not alter this conclusion. In studies of bubble collapse before
jet impact, the assumption of incompressibility has been made based on the idea that
only a small fraction of the energy of the bubble motion is radiated away as sound. In
the present case, the jet impact will cause an increase in the radiated sound; however,
it will be shown that the potential flow model allows for the loss of energy due to
impact. Surface tension effects are also neglected in the present calculations. Though
the influence of surface tension grows as the bubble volume becomes very small, it has
been shown that the inertia and pressure terms are still dominant (Hammitt 1980).
Profiles of a cavitation bubble just before the impact of the re-entrant jet and at a
time later in the evolution of the bubble are shown in figures 1 (a) and 1(b), respectively.
These profiles are from the results of the present numerical model. From figure 1(a),
it can be seen that the radius of curvature at the north pole (N, defined as the point
on the bubble axis that is farthest from the wall) is less than the radius of curvature at
the south pole, §,. Thus, the jet impact process begins with impact at a single point.
This instant in time is defined as the initial impact. As the process continues, more and
more of the two surfaces impact in a continuous manner and the bubble volume
decreases. The fluid that was originally above the bubble in the figure penetrates into
the fluid that is below the bubble creating the profile as shown in figure 1(b). In a real
flow, the interface between the fluid from above and below the bubble (called the
impact or penetration interface in this paper) contains a mixture of gas, vapour and
micro-bubbles, and a local shear layer is generated with the fluid in the jet moving
toward the wall and the fluid outside the jet moving away from the wall. In the present
potential flow approximation, the penetration interface is represented as a sheet with
infinitesimal thickness. This sheet has the properties of a vortex sheet in that the
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FiGURE 1. A cylindrical coordinate system and two axisymmetric bubble profiles corresponding to
stages (a) before and (b) after penetration. The profiles have been separated vertically for clarity. S,
represents a regular surface, S* and 5~ comprise a common surface which is connected to S, at the
triple point T, and S, denotes an infinite rigid wall. N, and S, are respectively the north and south
poles on the bubble surface.

pressure and normal velocities of the fluid are required to be continuous across the
sheet while the tangential velocities are allowed to be discontinuous. The remainder of
the bubble is toroidal in shape and is called a ring bubble. The circular line at which
the vortex sheet attaches to the ring bubble is called the triple-point line and its
intersection with the plane of the paper is denoted by the point T in figure 1(b). In the
experiments, the ring-bubble contains some non-condensible gas which will cause the
bubble to grow again after reaching a minimum volume. In the present model, the
pressure in the bubble is assumed to be constant, therefore rebound will not occur.
Current efforts are being directed toward simulating the rebound process with a
volume-dependent pressure inside the bubbie.

A cylindrical coordinate system is used to describe the motion of the fluid and bubble
surface, with r, 8 and z representing the radial, circumferential and axial coordinates,
respectively. The fluid motion is assumed to be axisymmetric. A rigid wall is located
in the plane z = 0 and extends to infinity. The pressure in the fluid far from the bubble,
P,,, is maintained constant as is the pressure in the bubble, P,. Before initial impact, the
bubble surface, as shown in figure 1 (a), is entirely a regular surface (Kellogg 1953) and
the fluid domain, D, is a simply connected region bounded by the bubble surface, S,,
the rigid wall, S,,, and an imaginary boundary at infinity, S,. After initial impact, S,
is transformed into an irregular surface as shown in figure 1(b). This surface consists
of two different regions: a common surface region which comprises the two surfaces S*
and S-, representing the vortex sheet, and a regular surface region S, which includes
the ring bubble. The fluid domain is still simply connected when the internal boundary
is taken as the union of S,, S* and S~.

The lengthscale for the problem is taken as R,,,. (the maximum radius the bubble
would have achieved in an infinite fluid), the timescale is taken as R, [p/(P,— P}
(the collapse time of a spherical bubble in an infinite fluid of density p), and the
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pressure scale is P, — P, = AP. With respect to the three scaling parameters, the non-
dimensionalized coordinates, r* and z*, time (* and pressures P* can be expressed as

i
N T

Other geometric, kinematic and dynamic quantities in the following mathematical
formulations are non-dimensionalized in the same manner. In the remainder of this
paper, all variables are dimensionless and the superscript * is dropped for c.nvenience.

2.2. Mathematical statement of problem

Based on potential flow theory, the velocity u can be represented by the gradient of the
velocity potential ¢,u = Vg, with ¢ satisfying Laplace’s equation inside the fluid
domain D,

Vié(x,) =0, xeD, Q)

where x is the spatial coordinate. Initially, the bubble boundary is assumed to be a
spherical surface with radius R,. Over this surface, a uniformly distributed velocity
potential ¢ is prescribed using Rayleigh’s (1917) spherical bubble theory:

2AP(RS,,, i
¢°=‘R°[‘37(‘R:—“)]- )

The boundary conditions before the impact of the re-entrant jet are as follows. The
kinematic boundary condition on S, is

dx
2=V x,€S, @)

where x,, is the position vector to a material point p. The kinematic boundary
conditions on the rigid wall, S,, and at infinity are, respectively,

0
20, ©)
and |Vg| 0. ()
The dynamic boundary condition on S, is
P(x,,1) =P, Xx,€S, ™

After initial impact, the boundary conditions (4) and (7) still apply without
modification to fluid particles on S, ; however, matching conditions must be introduced
on the common surface, S*nS~. The component of the velocity normal to the
common surface must be continuous across the surface,

ot __%
My lpes E
where 7}, and n;, are outward normals (directed away from the fluid) to §* and S~ at
P* and p~, respectively. The pressure across the common surface must also be
continuous, A
Plpls‘ = Plpcs" o)

Note that the pressure varies along the common surface and is not in general equal to
F,

@®

b4
peS”
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In order to solve the problem, the dynamic boundary conditions on the bubble
surface and the common surface, (7) and (9), must be written in terms of ¢. On S,, the
condition on ¢ is Bernoulli’s equation written in material derivative form:

Po~P,

28 _pwgr+ 2B pes, (10)

To derive the equation for ¢ on the common surface, consider Bernoulli’s equation
written for p*:

Ea R (R ) a
and for p~: a¢— (2‘:‘)' = %[(%1:;)’ ~ (%f—:)‘] +P"+;£. (12)

The left-hand sides of these two equations are the time rates of change of ¢ following
the component of the fluid motion in the direction normal to the common surface.
After subtracting (12) from (11) and employing the matching conditions (8) and (9), the
above equations become

D =g 1%y (%) 3
T D,t 2|\ as* os /)]
where the subscript n indicates the derivative following the normal component of the
flow.
2.3. Conditions at the instant of impact

As was pointed out in §2.1, the liquid-liquid impact occurs continuously. In the
numerical model, this continuous impact will be simulated by a finite number of
discrete impacts of surface panels of finite size. Each panel impact generates pressure
impulses and, as is shown below, temporal discontinuities in ¢ and V¢ at the instant
of the impact. The pressure impulse, /, is defined by

I=lim| Pds (i4)
-t J et
where P is the impact pressure and ¢’ and ¢” represent the instants just before and just
after the impact, respectively. Since the interval from ¢’ to ¢” is infinitesimal, it can be
shown from Bernoulli’s equation that the velocity potential and pressure impulse
satisfy the following relation (Batchelor 1967):

¢ —¢' =~1/p, (15)
in which ¢’ and ¢~ are, respectively, the velocity potentials just before and immediately

after the impact. This equation states that whenever an impact occurs, the velocity
potential is discontinuous at that instant and has a jump which is equal to —7/p. For

any two impacting material points (p* and p~) on the bubble surface, the above

condition can be written as
P (xpr, 1) = ¢ (x4, )—1*p, (16)
P (xp-, 1) = ¢ (x -, )= 1" /p. an
Subtracting (17) from (16) and noting that I* is equal to I~ at the impact point, a
relation for the difference in ¢ across the impact surface at the instant of impact is

obtained,
P (xps, ) =P (X~ D) = $7H(x 3, )~ P (x,-, 1) (18)
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This relation states that the difference in ¢ between two impacting points remains the
same during the impact. In the present model, the difference in ¢ vanes along the
impact interface. Best (1993) denved the same relationship, but applied it only to the
impact of the north and south poles. After impact, he created a simply connected fluid
domain by using a fictitious cut along which the difference in ¢ was assumed constant.

2.4. Boundury integryl equutions

The iniial boundary value problem for the velocity potental @ as defined in the
previous subsections, is solved by the boundary integral equation method. For times
before imual impact, the numencal solution method, which s explained in the
following secuon, i1s the one used by Blake ¢r o/ (1986) and others. In this method, the
boundary conditions, (4) and (10), are \ntegrated over each ume step o yreld the new
position of S, and the value of ¢ on this surface. To proceed on to the next ume step,
the values of d¢/Tn on S, must be determuned. This problem 15 solved with a well-
known boundary integral representation denved from Green's theorem:

‘)g) Glp.q) - {Zlé(p). peS,uS,
I Tou *.[G‘ ro o, O, W"l“‘ axg(p). peD, u9

where p 13 a Reid point, ¢ 1 2 ource point varying as an integraton vanabic on the
surfaces S, U S,. dS, 1 the differential area element of S,u S,. #, 8 the normal 10
S, U S, at ¢ directed outward from the flusd and the kernel G(p.¢) sequal to I/1p—¢l.
Equation {19) s often called the conventional boundary integral equauon (CBIE) 1n
the sense that the kernels invoived are weakly ungular for G{ p. ¢) and Cauchy uingular
for YG( p. ¢)/Om,. which are integrabie without the need of any speaal reatment.

Unfortunately, the above approach fals when the re-entrant jet approaches the
opposite surface of the bubble in the Gnal stage of the collapse Thus (asture 13 caused
by two problems with the CBIE Firt, just before tnstial umpect, an equatron wniten
for a pownt on the up of the re-entrant et will be nearly Wdentical to that wntien for a
cotresponding pownt near the south pole of the dbubbie Thus. for instance,  one 1s
solving for 0@ /in with known ¢, anll-condiboned or nesrly ungular coefficent matnx
will result in the Doundary clement cakculations Second. just aflter unstial impact, due
to the matching condition (8) the integral of dg/cmalong S” and S° wil cancel Thus,
sdditional squations are needed to cakkulate 0g/dw along the common surface In the
following, a new approuch 1 presented s whch the CBIE ©v modified to account for
the common wrface and a hyperungular boundary integral equation (HBIE)
introduced to form a closed equation system. With thas new spproech, the cakculatrons
bused on the boundary integrsl equahon method can be carned out conunvously (rom
before mtial apact into the penetration process

Making use of the propertes of ungie. and double-layer potentials (Ganter 1967,
Burton & Miiler 1971) as weil as the matching coadition (8). the CBLE (19) 15 modified
in Appenche A for cases with 3 common surface to ywid

f [“‘r r'w’ *:‘9‘3‘2-_!2«.)]45'
Sy Sy

06( ) . [2me(p) peS,uSs,
. ..Ll_ld (9)~ 9" () dS, {M“(’Nf(ﬂl pest @

ta this modified CllE the equation 13 written with respect (10 pe S” when the field
point p ia on the common wirface S n 5~ In the following section, on the numencal
technque. 1t wmill be shown that during penetration the boundary conditons can be

. L 25
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integrated over each time step 10 yield the new positions of the surfaces S,and S*n S™,
the values of ¢ on S, and the values of ¢* — ¢~ on S* N S~. With these values, d¢/an
on S, and ¢* +¢~ on $* NS~ can be determined from (20). However, 3¢/dn on the
sheet is still unknown.

In order to find an analytical expression for d¢/dn on the common surface, the
modified HBLE is derived in Appendix A by performing a directional derivative of the
CBIE with p inside the domain D and then letting p approach the boundary along a
direction normal to the boundary. The expression of the modified HBIE has the form

iG(p.q)2q) _¥'G(p.q)
j[ - bl uales,

| %60 g --{216“')/3"1- PESUS,
where » is the outward normal of the surface at p. Like (20), this modified HBIE is
vahd for the ficld point p cither on the common surface vr on the rest of the boundanes.
From (21), 0¢/in on both $° NS~ and S, can be determined as long as ¢ on the
surfaces S,US, and ¢° — ¢~ on S~ are prescnbed.

2.5 Energy comsiderations
The equation governing the energy of the flow is

I h’d"-f kiay+fs.:_’.’!(m:)— ¥,(0)) = 0, 2
Vs L P

where the integration limits ¥{1) and V{0) are the flwnd volumes at times rand t = 0,
respectively, and V(1) and ¥ (0) are the volumes of the bubble at umes 1 and 1 = 0,
respectively (see Duncan & Zhang 1991, equation (12)). The first two terms on the left
are the kinetic enerpes of the flud at the two umes and can be cakculated from surface
integrals over the bubbie and the common surface (Lamb 1945):

Lﬂh’d?- ;L.;gd:. @)

where S 13 the internal boundary S, U S* U S~. The third term in (22) is the potential
energy defined as the work done against the pressure at infinity due to changes in the
bubble volume.

For times up to the instant before mitial impect, the total coergy of the system is
constant. Duning the collapse phase before impact, the potential energy decreases and
the kinetic energy incresses by equal amounts. However, there is a loss of kinetic
energy associated with the hqud-bqued impect and this energy is not coaverted to
potential energy Thus, the total energy decreases. This kinetic energy loss is given by
the following equation which 13 derived in Appendiz B:

8k, = [ bosr-uverar = -1 rowr-verraes @

Rogers ef ol (1990) and Srymczak of of. (199)) also noted an energy loss duriag impact
and presented a similar formula. [n the above equation, the vakue of /* is a positive
marzimum at the impect interface since the gradieat of / must scoelerste the fuid oo
doth sides of the interface in directions away from the interface. The difference in the
normal components of the velocities inside the brackets is always positive as long as
there is an impact. Thus, AE, must be less than zero. It should be noted that the above

» L]
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. expression was derived on the assumption that the colliding surfaces stick together
after impact. It is this assumption that causes the loss in energy.

As an example of a simple impact problem demonstrating the energy loss, consider
two parallel liquid layers of infinite extent in planes normal to the z-axis. One layer is
above the z = 0 plane and has a uniform velocity » = — Vk and a thickness A* while
the other layer is below the plane z = 0 and has a uniform velocity o = Vk and a
thickness A”. Impact occurs when the ‘inner’ surfaces meet at z = 0. In this example,
the divergence of equation (B 1) yields

‘ ) @)
which has the solution Vh'
[EEL LS (26)
in the upper layer. Evaluation of (24) in llm case yields
h*h-
- : |
2Vier Nih 2N

per unit area. Thus, for the case when A* = A™ = H, the kinetic energy change is
—pV*H per unit area. This change is equal to the toial kinetic energy before impact
and indicates that, as expected, the two layers will come to rest after impact.

3. Numerical scheme

The numerical schemes to be discussed 1n this section deal with two issues: the
accurate solution of the integral equation system (20) and (21) at a given time instant
. and the ume advancement of the boundary conditions (4), (10) and (13). For the first
issue, it 13 important to note that while the introduction of the modified HBIE (21)
produces a well-posed sysiem of equations dunng penetration, it unfortunately makes
the numencal scheme more complicated than schemes that use the CBIE alone in cases
before penctration. These complications anse out of the need for regulannng the
hyperuingular kernet, making the solutions umique and discretizing the geometry and
density functions properly For the second issue, the kinematic boundary condition
must be modified slightly (o treat the node points on the vortex sheet.

).1. Reguiarization of the hyperringuior ntegral
As can be seen from (21). the kernel 3*GY p. q)/On, dn, has a third-order singularity
(1/1p - ¢) as p approaches ¢. which makes it m«nmﬂemtheofdmnnm
Several regularization techniques to treat integrals of thus kind exist (Meyer, Bell &
Zinn 1978, Ingber & Rudolph 1990. Knshnasamy ¢r o/. 1990). In this paper, the
hyperungular kerne! has been transformed to a Cauchy-singular kernel. The relation
between the two kernels can be expressed in the identity (Ingber & Rudolph 1990)

J «v)M“o' I (ny % Y H@)) Im, x ¥, G(p.9)1dS,. (28)

vhenlhe;ndmuowntocmthnmbmp(mdnmthauheopenmuwmdom
with that subscript as a variable. The decomposition of this integral in a cylindrical
coordinate system with axisymmetry transforms the density function ¢(¢) in (28) to the
denmity function C¢(q)/r,. where ¢, is the arclength along the wrface. The
corresponding derivations related to this decomposition and expressions for other
terms in (11) can be found in Appendix C.

[
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3.2. Uniqueness of solutions of the hypersingular integral equation

« ...g the hypersingular integral equation (21) alone to solve the Dirichlet problem of
Laplace’s equation will result in non-unique solutions. (Solutions are only unique up
to an additive constant.) This non-uniqueness can be easily deduced from the identity
(28) in that, if #(q) is a constant along the surface, the integral with the hypersingular
kernel is identicaily equal to zero; thus, (21) will yield og/an = 0 at ail points on the
surface. However, this contradicts the ~ell-known case of a Rayleigh spherical bubble
in an infinite luid where a uniformly distributed ¢ on the bubble corresponds o a non-
zero 0gp/0n on the surface. In the present work, this non-uniqueness is resolved by
introducing a combined scheme in which the modified CBIE and HBIE are jointly
used. In this combined «cheme. the CBIE is responsible for recovering the constant in
¢ along the surface “hwch would be lost if the HBIE were used alone.

5. Time advancement algorithm

The time advancement techniques for limes before and during penetration are
discussed separately i -. . su.section. All of the temporal integrations are performed
by the following predictor-corrector scheme. Given an ordinary differential equation
dy/dt = f{1, y) with an initial conittion y(1,) = y,. the numenical solution for y at step
i+1(i=0,1, .)is given by

Pm!ﬁl’ prl yt.vl -y, +(‘n|—'u’/('t-y!)- (29)
corrector step: Yeor ® N+ Wle, = 1)U UL y) + S0 0D 30)
For case of presentation, only the predictor step is presentad in the following.

331 Time marching before mitial impact

Let us assume that at ume ¢ all quantities are known. To proceed on o 1 + Al, the
boundary comditions (4) and (10) are integrated following the fluid particie p on the
surface S,

x (1 + A1) = x (1) +V(x,, ()AL a1
$x,.1+80) = «x,:)+u('-v-‘-‘i’zzi'+f=fﬁ). (32)

These equations yield the new position of S, and the values of ¢ on this surface at
t + Ar. From thus information. the derivative of ¢ in the direction tangent o the surface
can be computed. In order to proceed to integrate {(4) and (10) over the pext time step
the values of d¢/n are required These values are obtained by solving the integral
equations.

132 Time marching afier initial impact

After initis! impact, material points oo the torowdal bubble are treated Like those
before impact by integrating (4) and (10). The integration of the boundary conditions
for points on the commoa surface is somewhat more complicated since two Buid
particies, p" on S* and p~ on §°, occupying the same location on each side of the
surface at time ¢ will in general not be together at the next time step (the tangeatisl
velocities are not equal on each side of the sheet). The relation between the velooity of
a fluid particie p and the velocity of its projection in the direction normal to the surface
ts

(-——;-n,)u, - gu, - d—:;! 33)
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where x} is the position vector of the projection of x, in the normal direction =,
Writing this relation at p* and p~ on S* and S~ for the predictor step yields

x{t+A) = x;.(:)+A12:: %7 My (34)
and X3t +An = x'-(l)+Al§:: (39)

respectively. In view of the matching conditions (8) and the fact that »; = —n_, the
above equations reduce (o a single equation yielding the new position of the common
surface at time ¢ + A7. The boundary condition (13) integrated for the predictor step is

1o A o ag°\'_ (397"
sosan-pisan = o-io-5(F)-(E)] oo
where the subscript n indicates the values of ¢ at a point following the normal flow.
it should be emphasized that it is the values of ¢ on the bubble surface (S,) and the
values of Ag (= ¢* —¢") on the impact interface (S° N S7) that are advanced in time
by (32) and (36). Both quantities are continuous with respect to ime.

3.3.3. Time step determination
In the ime advancement, a variable time step technique is adopted. At each step, the
ume increment As is determined by
C
A= oS 37

where ¥, _, is the maximum velocity on the bubbie surface at the current time step and
C is a constant that is taken as 0.04 before penetration when the CBIE is used and 0.01
during penetration when the combined scheme s employed. The determination of these
values of C is explored n §4 3.

).4. Numerical impiermeniation of the integral equations
The modified CBIE (20) and HBIE (21) are solved by the boundary element method.
The infinite riggd wall s umoulated by an wnsge bubble. The bubble surface is
discretized by n, panels. Given the - and z-coordinates of a, + | panel nodes along the
surface, the coordinates r and 1 along each panel can be written as functions of a cubi
spline parameter. {. which © chosen as & vanabie slong the chord length of each panel
(Dommermuth & Yue 1987, and Press ¢ of. 1989),

ren). 2 (38)
Thus, the arclength coordinate, s, uloqnchmdmbcaluhndby

0= [a-[{(Z) «)Tdc 09

Other geometric quantities in the integral equations such as ({p.¢) and V(H p. ¢) are
computed from the above equations. The most stable calculations were performed with
the density functions ¢ and 0g/on inside each panel interpolated as cubic splioe and
linear functions of ». respectively.

The spline fitting of the surface during penetratioa is complicated by the presence of
the triple point where the common surface attaches to the ring bubble. In the present
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work, the surface is fitted continuously from the north pole to south pole by a path
covering S*, S, and S~ sequentially. As a result, the normal (o the surface directed into
the fluid changes continuously duning the integration around the surface and a cusp is
formed in the bubbie at the triple point (see figure 1 5). This treatment is based on the
fact that at the final stage of the bubble collapse, the speed of the surface of the re-
entrant jet is generally on the order of 10'- 10%AP/p) while the fluid near the wall is
moving more slowly in the opposite direction. Thus, there exists a strong shear layer
in the region close 1o the triple point. In experiments, this shear layer contains a layer
of gas. A similar flow is generated when a liquid jet impacts on a flat water surface and
air entrainment occurs along the periphery of the jet. Surface tension forces have the
tendency 1o round the cusp, but in the present case this does not occur owing to the
effects of inerua and the short timescale.

Since the probiem is axisymmetric about the z-axis, the terms in the integral
equations can first be integrated analytically with respect to the circumferential
vanable 0. The resulting terms then involve elliptical integrals of the first and second
kinds as functions of the arclength 5 in the & = 0 plane (see Appendix C). The fieid
puints (collocation points or nodes) are taken at the edge points of the pancls. As a
result, the initcgral equations (20) and (21) can be written in discretized forms within
cach panel,

""'"J’L’[g” +o &]dx,+§ "DJ(f')’-(ﬁ'Ylds,”:

J-n
{2“,; l-m+l....,n.-m+!
“laxtg; +97); i=),.

"] (e A B[ A2 “)’]a,u

x(dp/m),; (wma+l,.. . .A—m+] ol
= len@g*/om)y; iml,....m, “n
where m is the index of the triple point; / and / represent the indexes of the feld point
and source panel, respectively; L, is the arclength of panel /. 4 and 4 are the terms
corresponding to the contribution from the image bubble; C,,, D, £, and K, are
functions of the eiliptic integrals and can be found ir Appendix C. ¢, (39/an) and
(0g/0sY are functions of the srciength insade the panet /. and ¢, and (3¢/dn), are values
at the point i. Gauss-Legendre quadrature formuise were used to cakculate the
mtegrals in (40) and (41). in whach the regular integrands were integrated with a 5-point
(ormula while the non-reguiar integrands, which coutain loganithmic siagularities,
were trented with the formulation gven by Anderson (1965). The linear system of
algebraic equations formed in this way were solved with the LDU Algonthm (Press
et al. 1989).

Various combinations of (40) and (41) were applied at the nodes during different
phases of the cakculations. For cases without & coaunon sutface, two combinations
were used. In some cases the CBIE was applied st all the nodes. In other cases, the
HBIE was applied at the first a, nodes on top of the bubbie starting with the north pole
and the last », nodes ending with the south pole while the CBIE was applied at the
temaining a, + | ~ 2n, nodes. [n cases during penetration with m doubdie nodes along
the common surface, the HBIE was applied at the first a, + | — m nodes starting with
the north pole and the CBIE was applied to the last » nodes ending with the south

pole.

(40)
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The adjustment of the time step during the impact of adjacent nodes was found to
be critical to achieving an accurate calculation. The general technique employed here
was to adjust the time step so that, given the distance and relative velocity between the
nodes at the current time, the nodes would impact at the end of the time step. To
implement this scheme a minimum distance ¢ was chosen. If the distance between one
or more pairs of nodes on the ring bubble adjacent to the triple point was less than ¢,
the time step was adjusted so that all of these pairs collided by the end of the time step.
In performing the calculations, it was found that as ¢ was decreased the calculation
converged initially. However, if ¢ was too small, an overlapping of the nodes on the
ring bubble near the triple point occurred at the next time step. It is thought that these
probiems arise because the Green's function between nearly touching nodes from
oppostite sides of the bubble becomes singular as the distance between the nodes tends
to zero. Thus, for small enough ¢ the solutions of the boundary integral equations are
probably inaccurate. After a number of test calculations. it was found that ¢ = 0.002
was a typical minimum value that produced a converged cakculation without
vverlapping of adjacent nodes. This value was used for all the calculutions presented
in this paper.

).S. Numerical insiabuities

The numerical method presented above exhibits unstabie behaviour when the volume
of the ring bubbie approaches the initial volume of the bubble. The causes of the
numerical instability are not ciear. There 1s no theoretical analysis available to examine
the numencal instability because the boundary conditions (4), (10) and (13) are coupled
and the conditions {10) and (1)) are nonhnear. Several researchers (Longuet-Higgins
& Cokelet 1976, Dommermuth & Yue 1987, Oguz & Prosperetts 1990) have reported
uimelar instabilsties encountered 1n boundary element calculauons employing higher-
order elements when umulaung nonlinear waves and water droplets.

To cope with the instabrdities, 2 5-point smoothing techmque (Mathematical
Handbook 1977, pp. 907-908) was introduced. Civen a data set y(i=0,1.2. ... .m),
the modified data set y,(+ = 0.1,2, ., m) 13 computed by the following smoothing
formulations:

J’; - “ "’()’.-a"‘h.d* '2()'0-.’*75.;)+ '7)"1- i=2 . m=2 (42)

Yo o &y, + 9y, =y, =37, + 5. (43)
v, = (v, + 3y, + 12y, + 6y, ~Sy). (44)
Yot ® A =5y #6V s ¥ 12y g+ 1y + 97l (45)
y;n "#)yn—a—,"w‘l-)’n~l+9-'o-|"3"-)' (‘6)

Mesh regridding is also adopted to kzep equal panel uzes dunag the ume steppeng.

4. Verification of the numerical modeiling

In ths section. the results of several static and dynamic tests demgned to venfy the
mathematical model and to assess the performance of the combined numencal scheme
developed in §§2 and ) are presentad.

4.1. A sheet atiached 1o a tovoid

The first test of the numerical model i t0 examine the accuracy of the boundary
element solver with the combined scheme on a static problem. fa order for this test to
have relevance to the penetration problem, it must satis{y the following conditions: the
boundary geometry must include both regular and common surfaces, across the
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Founz 2. Comparisons of the resulits of the combined schame with aaalytical solutioss for & toroidal
mrface and » 'wo-layer shewt. (#) Gevmetry of the sheet, oroid and mesh distrdutions (2. sodal
point). (5) Cakculsted () snd anslytical (——) ¢ o the shent. (c) Calcuisted () sad analytical
{—~—) & /3 on the sheet and toroed.

common surface ¢ and d¢/3r must be discontinuous while 3¢ /3n must be continuous,
[V¢i must vanish at inflnity, and ¢ must be sufficiently coatinuous inside the domein
The boundary geometry of the chosen probdlem is thst of s toroid sbout the r-axis
connected to a fiat circular sheet oo the plane 7 = 0 a3 shown in figure 2(a). In the
domain exterior to this boundary. Lapiece’s equatios can be easily solved ia toroidal
coordinates (v.2.¢) pven by the following trassformations (for axisymenetric

prodiems): wnh
a
X = oo (y) ~ e (' “n
esn(0)
1 o (y) - coe () “9

Thus, the cross-section of the toroid s given by gy g, — SO0 nand ¢ = 0 in the
(7.0.¢) system or (x —acoth g, + ' = ¢*/sinhYy,) sod y = 0 in the (x, y, z) system,
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Frouns ). Comparisoa of bubbis profiles betwess the cosventionsl (——) and combined (- ----- )

schemes for » transient cavitasson bubbis collepsing sest s rigid el v R, = 0.1 aad Z, = |.5. The
numbers | 1o § cocrespond 10 the noa-dimensionsl tumes ¢ = 0.983, 1.707, 1 877, 1.972, 2014, 2043,
2.068, and 2.086.

while the cross-section of the sheet is given by 0 K y €< 9. O = tx and ¢y = 0 Or
0€ xSacothy,—a/sinhy, y = 0and 7 = 0 in the two different coordinate sysiems,
respectively. In the present test, 3, is chosen as 2.890454 and ¢ is 1.117637. From the
infinite number of particular solutions of Lapiace’s equstion in the (y,4, ¢) system
(Moon & Spencer 1961, pp. msnxmumwmamm
requirements of the numerical tests cited above. Thus, given ¢ oa the shest and the
toroid in the form

#(v.®) = (cosh () — cos () sin (), (49)

the corresponding expressions for dg/3n are, respectively,
Og/0n = 0 on the shest, (30)
3¢ ‘I = (cosh (y) — cos () sink (v) sin (}9)/(2e) on the toroid. (1)

In the numerical calculations. ¢ was specified on the toroid sad ¢° — ¢~ was specified
on the sheet from the analytical solution (49). The integral equations (20) and (21) were
then solved with the cominaed scheme for 3¢9/n oa the entire surfacs and ¢ ou the
sheet. The comperison betwesn the analytical and sumerical calculstions of ¢ on the
sheet and dg/On on doth the sheet and toroid are plotied ia Agures 2(5) sad 2(c). The
results show that the numerical calculations agree well with the analytica! ones with the
errors in 3¢/ and ¢ st the sorth pole less than 0.3% and 0.2%, respectively. The
deviation of 3¢ /On near the triple poiat between the sheet sad toroid is as expected
because the nurnerical scheme is coastructed on the basis of 3 smooth surface geaerated
by a cubic-spline fitting rather than s aco-emooth connection at that point as in this
test case. This is 0ot considered to be a problem since, in the simulstion of the
penetration process, the tangeat siong the bubbie surface is always assumed (o vary
coatinuousty.
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umilar calculations in the literature and found (o be in excellent agreement. Initially,
the bubbile is spherical and centred st » = 0 snd Z, = 1.3 with redius R, = 0.1. The
combined scheme was used with a, = )2 and a, = 16. Linear isoparametric elements
were employed for the conventions! scheme. alo with a, = 32 In figure 3, the bubble
profiles at different time instants in the collapse phase obtained by both the combened
and conventional scheme sre plotted together. Both schemes give almost the same
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bubbie profiles at the same time. The heights of the north and south poles, the velocity
potentiails at the north and south poles and the kinetic and potential energies of the
flow are plotted versus time in figures 4(a), 4(b) and 4(c), respectively, for both
schemes. There is good agreement in all cases.

4.). Convergence studies
Several computations simed at examining the convergence of the combined scheme
Figure 5(a) and 5(b) show the height and velocity of the north pole from before
penetration through the penetration process for various panel numbers. As can be seen
from the figure, the resuits converge as the number of panels increases. Figures 6(a)
and 6()) show the same Quantities converging as the time step decreases. The number
of panels and time step used in the present resuits are given in the following section.
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The tests conducted in this section show that the combined scheme developed in §§2
and 3 is valid in both static and dynamic cases.

5. Simulation of the penetration process

The cakulations presented in this section were done with n, = 64 and R, = 0.1.
From the initial instant up to the time when the distance between the north and south
poles becomes less than 0.03, the CBIE method is used for ail nodes. At this point, the
scheme is switched to the combined CBIE-HBIE method with n, = 32. When
penetration begins, the scheme is again switched to that described in §3.4 for cases with
a common surface. The parameter C for time stepping is taken as 0.04 before
penetration and 0.01 during penetration. The value of ¢ is chosen as 0.002 (see §3.4).
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In the following, results are presented for Z, = 1.1, 1.25, 1.5 and 1.75. The results for
Z, =15 and |.| are presented first and in more detail than those for the other Z,
values. For reference throughout the discussion, tabie 1 gives the time (7)), the heaght
(Z,). the velocities of the north and south poles of the bubble (¥, and ¥,) at the instant
before initial impact and the velocity of the north pole of the sheet (V) as well as the
circulation (I,,, defined below) at the instant after initial impact for all four values of

Z,
* 5.1 Bubble profiles and velocity fields

The general features of the flow field just before and dunng penetration are illustrated
in figure 7, for Z, = 1 5. Figure 7(a) shows the flow field one time siep before
penetration. The re-entrant jet has formed at the top of the bubble surface and is
moving toward the rigid wall. The fluid on the lower side of the bubble has not yet
sensed the jet and 15 still moving away from the wall. The relative normal velocity
between the north and south poles at this instant is 15.05 (see table [). The poles of the
bubble meet at 2 = 0.78 and the flow field soon afller penetration is shown in figure
7(b). As can be seen in the figure, the geometry of the bubble surface has become a nng
bubble with an attached sheet. The flow pattern has suddenly changed such that the
flow on the lower uide of the bubble has reversed direction and i« now mowving toward
the wall The velocity of the re-entrant jet 1s still directed toward the wall but with »
much smaller magmitude (4.08) than before impact (11.57). The veloaity components
tangent to the common surface and the nng bubbie surface are directed mainly toward
the axis of symmetry on the jet side of the common surface and bubble and away (rom
the axis on the other side . thus indscates that there are vortex elements along the sheet
and in the bubbile that circle the :-auss. The mechanism that bnings about this sudden
change in the flow field 13 the iquid-hqusd impact dunng jet penetraton.

Further development of the penetration process s shown in figure 7(c). The
dominant changes 1n the bubble profile are the drastic reduction in the volume of the
ring bubble and the extension of the vortex sheet due 1o continuing impacts of the
surface panels of the ning bubdle There is also some translauonal motion of the bubble
and the sheet in the direction of the ngd wall. In figure 7(d), the volume of the ring
bubbie has reached about 0 72 umes the iniial bubble volume. The caiculation becomes
unstable soon after this ume. [t is presumed that if gas were inciuded in the bubbie, the
bubbie would begin a second growth phase at approumately this ume, depending on
the amount of gas. The flow pattern in figure 7(d) is charactenzed by a large vortex
sheet attached to a small ring bubble with a rotating flow concentrated in the area
around the nng bubbie in the vicinity of the tnple posnt.

Bubble profiles and velocity fields for Z, = 1.1 are pven in figure 8. As in the
previous case, the impact of the re-entrant jet results in the formation of a nng bubble
and a vortex sheet. At the instant before 1nitial impect, the north and south poles of
the bubbile are much closer to the wall (: = 0.10) than in the previous case and the
relative normal velocity between the north and south poles is 9.10 compared to 15.05
for Z, = | $, see table 1. The remaining bubble volume at the instant of impact (46.19
for Z, = 1 1) 1s much larger than in the case for Z, = |.5. Later in the penetration
process. the tip of the vortex sheet hits the rigid wall for Z, = 1.1 (figure 8¢, d) while
the tip of the sheet for Z, = 1.5 is still relatively far away from the wall even at the end
of the first collpse. The shape of the vortex sheet also shows marked differences
between the two cases. For Z, = 1.5, the vortex sheet is ' U -shaped while for Z, = 1.1
the sheet rolls up at the sides due to the stronger influence of the wall. The cakulation
for Z, = 1 | is terminated when the bubbie volume is reduced to about 7.1 times its
initial volume because of numerical instabilities
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3.2. Presswre fields
Themmltnnypointintheﬂuiddonninmmwurmthenon-dimuﬁom

Bernoulli equation, .
2]

The required spatial and temporal derivatives of ¢ were calculated by finite difference
l’romloaluluaofﬁmalmuk&udfmtheinwudeqmﬁom(Anmd(A 13)
in Appendix A using values of ¢ and 3¢ /3w oa the surface of the bubble and the vortex
sheet. Note that the pressure can be computed after the calculation of the bubble
motion is completed. Unfortunately, during penetration, at each time instant when
mmﬂmmmhofﬁniuﬁnmewha.dmmmnﬁhiujumpsumbe
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seen (rom (15). These jumps cause the derivative of ¢ with respect to time, and thus the
pressure, to fluctuate wildly. If the panel size were infinitesimal these jumps in ¢ would
also be infinitesimal and the pressure would vary rapidly but in a smooth manner. To
remedy this problem, a linear least-squares fitting technique was used to smooth ¢ in
& given time interval before computing d¢/37 and the pressures.
Corrupondmglolheﬂovﬁeldsml;m‘l(n—d)forz.-ls four plots of the
pressure contours are presented in figure 9(a~d), respectively. The pressure contours
are given as solid lines while the profiles of the bubbie are shown as dotted lines. The
pressure field one step before penetration is given in figure 9(a). The highest pressure
region in the field is within the contour with magnitude 29 which is located on the z-
axis above the bubble. The pressure field just after impact, figure 9(b), is dramatically
different than that before impact. The highest pressure region in figure 9() is at the tip
of the jet where the magnitude of the enclosing contour is 80. This high-pressure
buildup at the penetration interface in turn causes a large deceleration of the fluid in
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the re-entrant jet and an acceleration toward the wall of the fluid between the sheet and
the wall. From the pressure contours in figure 9(c, d), it can be seen that the pressure
at the penetration interface continues to increase, reaching 165 in the final figure. The
pressure contours far from the bubbile are nearly circular at this time.

The pressure contours corresponding to the velocity fields in figure 8(a-d) for Z, =
1.1 are presented in figure 10(a—d), respectively. As can be seen from figure 10(a), at
the instant just before penetration, a high-pressure region is again located on the z-axis
above the bubble. The maximum pressure contour in this case is 9, considerably less
than in the case for Z, = 1.5. Immediately following the initial impact, figure 10(3),
large pressures are located around the impect interface. The pressure coatour
surrounding this region has a magnitude of 30 and intersects the wall. The further
development of the pressure fields is given in figure 10(c, d) from which it can be seen
that the pressure reaches more than 45 at the penetration interface and the wall. It
should be noted that the high-pressure region on the wall covers a smaller area for
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Z, = |.l compared to Z, = 1.5. This concentration may be partially responsibie for the
well-known increase in the potential for surface damage as Z, is decreased. Also of
interest in figure 10(d) are the two pairs of closed low-pressure contours. The upper
pair encloses the ring bubble while the lower pair, which is located near the bend in the
vortex sheet. indicates the presence of a localized vortex-ring-like structure. This
structure is also visible in the velocity contours in figure 8(d).

5.3. Motion of the north and south poles

In this and the following subeections, selected quantities from four calculations with
Zy=1.75, 1.5, 1.25 and 1.1 are examined as functions of time. In order to make
comparisons of various quantities after initial impact, it was decided to define a
common time origin, 7,, the time when the north and south poles of the bubbie meet
at the instant of initial impact. From the data in tabie 1, it can be seen that T, increases
with decreasing Z,. The heights of the north pole for the four cases are plotted in figure
1. After initial impact, the north pole is defined as the point where the vortex sheet
intersects the z-axis. As can be seen from figure 11, the north pole continues moving
toward the wall after the initial impact in all cases. The relative velocity of the north
and south poles of the bubble just before initial impact can be found in table 1 along
with the velocity of the vortex sheet just after initial impact. The relative velocity,
V,— V,. decreases steadily from 16.56 at Z, = 1.75 10 9.10 at Z, = 1.1; however, the
speed of the jet tip just after initial impact is between 4.1 and 4.25 in all four cases. The
slope of the curves in figure 11 indicates the velocities of the north poles. As can be seen
from the figure the velocity is reiatively constant after initial impact for the larger Z,;
however, for small Z,, the velocity decreases with time and is nearly zero at the end of
the collapse for Z, = 1.1.

5.4. Pressure at the centre of the wall
In figures 12(a) and 12(3), the velocity potential ¢ and the pressure on the wall directly
under the centre of the bubble ((r, 2) = (0,0)) are plotted versus time for different Z,.
Note that the plot of ¢ starts at ¢ = 0 while the plot of the pressure starts fairly late in
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the collapee phase, ¢ = 1.80. From Bernoulli's equation (52), the pressure at the centre
of the wall is equal to —d¢/dr since ¥ = 0 at this location. Thus, the pressures plotted
in figure 12(b) were obtained by differentiating the curves of ¢ in figure 12(a). Before
differentiation, the ¢-data were smoothed with a running 40-point least-squares fit of
a second-order polynomial in order to eliminate the jumps in ¢ caused by the panel
impacts. Each pressure curve has a short gap near the time of the initial impact. This
gap is due to the inability of the second-order polynomial to fit the ¢-data well due to
the rapid fluctuations at that point in time. All cases show sudden rises in the pressure
during jet penetration. For the case of Z, = 1.1, there is a plateau in the pressure after
initial impact at about the time when the vortex sheet reaches the wall.

Figure 12(b) provides useful information of the time history of the pressure at the
centre of the wall. However, it should be pointed out that the ‘ maximum ' values in this
plot occur while the pressure is still rising at the point when the calculations terminate
due to numerical instabilities. To obtain a true maximum value of the impulsive

| =Y
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bubbie, ¢5 ~ ¢;. versus time afier initial impact, 1— T(Z,), for various vakues of Z,.

pressure on the wall, a rebounding mechanism such as that provided by a non-
condensible gas inside the bubble must be considered. A study of the impulsive
pressure due to a gas bubble collapse and rebound is currently underway.

5.5. Circulation
Before penetration, the fiuid domain is simply connected and the bubble boundary is
a regular surface. In this case, there is no circulation along any ciosed path inside the
fluid. However, after initial impact, if a closed path is drawn such that it pierces the
vortex surface, the circulation along this path is not zero, and the fluid domain is no
longer simply connected. The generation of this circulation is due to the liquid-liquid
impact rather than viscous effects. If a closed path is drawn starting from the south pole
and ending at the north pole of the bubble and enclosing the sheet and ring bubble, the
circulation for this path, I",,, is given by (¢* —¢") evaluated at 7 = 0. From (13) it is

easy to show that
dr, D(g‘-f)
- -,
—-ﬁd’ Br » 0 (53)

since 3¢/ds = 0 at r = 0. This finding was used in the two-step method of Best (1991)
to chooee a value of the circulation for the ring bubble. The values of I',, are givea in
tabie . As can be seen from the tabile the circulation increases monotonically from 4.37
(0 5.40 as Z, decreases from 1.75 to 1.1. It is also interesting to examine the division
of the source of the circulation between the vortex sheet and the ring bubble. This
division can be seen by comparing the total circulation, I',,, to the circulstion around
the ring bubble, I°,, which is obtained with a path that starts at the triple point on the
underside of the bubbie, extends around the outer side of the bubble and ends oa the
top side of the bubbie at the triple point. Thus, I, = ¢7 —¢5, where the subscript T
refers to the triple point. The values of the two circulations are plotted versus time in
figure 13 for the four values of Z,. The solid lines in this figure represent the
circulations associated with the ring bubbles, I, while the differences between the
dotted and solid lines are the circulations associated with the vortex sheets for different
Z,. As noted in the previous subsections, the step-like appearance of the plots is due
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to the discrete panel impacts. This figure shows that, for all four cases, after penetration
the circulation associated with the ring bubbie decreases with time and, since the total
circulation is constant, the circulation associated with the sheet increases with time. As
Z, decreases, the rate of increase of circulation associated with the vortex sheet
increases. At the end of the simulations the percentage of the total circulation
associated with the sheet is on the order of 50% for the cases with larger Z,.

5.6. Energy
The potential and kinetic energies of the flow were caiculated using (22) and (23).
Figure 4(c) is a plot of the potential, kinetic and total energy versus time from 7 = 0
up to the instant before initial impact for Z, = 1.5. As can be seen from the figure, the
total energy is constant. Figures 14(a) and 14(}) give information on the energy versus
time after initial impact. The potential energy is proportional to the bubble volume,
which is plotted in figure 14(a). As can be seen from the figure, the volume at the first
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instant of impact increases with decreasing Z,. For exampie, the bubble volume for
Z, = 1.75 has reduced to almost its initial volume at ¢ = 7, while the corresponding
volume for Z, = 1.1 is about 48 times as large as its initial value. Note also from figure
14(a) that the bubbles with larger volume at the first instant of impact take a longer
time to reach minimum volume while the rate of decrease in volume with time does not
vary appreciably with Z,. The total mechanical energy versus time after initial impact
is presented in figure 14(b). As was noted in §2.5, the total mechanical energy of the
system should decrease with time for 1 > T, owing to the liquid-liquid impacts of the
panels. Energy loss should only occur at the time steps where an impact between two
or more surface panels occurs. This behaviour is generally evident in the resuits of the
calculation as is shown in figure 14(b) at early times for Z, = 1.25 and 1.1. It is believed
that the changes in energy between impacts in the other calculations are caused by the
extensive regridding of the surfaces necessitated by the movement of the panels from
S, 10 $* U S~ combined with finite panel sizes and time steps. In general, the rate of
energy loss with lime increases as Z, is increased. For Z, = 1.75, the flow loses about
18% of its total energy by the time the calculation becomes unstable. When the
caiculation for Z, = 1.1 becomes unstable, the energy loss has reached only 7% of its
original value. In a2 compressible flow this energy would primarily be radiated away in
the form of sound or shock waves. In the present incompressible cakculations this
energy is effectively radiated away at infinite speed.

6. Conclusions

The final stage of the collapse of a cavitation bubble near a rigid wall has been
simulated with a boundary element method. The method allows for the simulation of
the growth and collapse of the bubble including the re-entrant jet impact and
penetration processes that occur toward the end of the collapse. During the impact
process, the bubble is transformed into & toroidal-shaped cavity (ring bubble). This
ring bubble is attached 1o an impact interface that separates the fluid masses that were
initially on opposite sides of the bubble. The impact interface is assumed to be
infinitesimally thin and the pressure and the normal velocity across the interface are
assumed to be continuous. This modelling allows for the formation of a vortex sheet
along the interface.

The results of the calkculation show that the impact of the re-entrant jet starts at a
single point on the north and south poles of the bubble. As the process continues, more
and more of the surface of the bubble participates in the impact process. Before initial
impact, the fluid in the re-entrant jet is moving toward the wall with high speed and
the fluid on the other side of the bubble is moving away from the wall. The relative
velocity of the poles of the bubble at the instant before initial impact increases with
increasing Z, (the initial distance of the bubble centroid from the wall). During impact,
a high-pressure region that is generated around the vortex sheet dramatically
decelerates the fluid in the re-entrant jet and forces the fluid on the other side of the
bubble to accelerate toward the wall. The impact process generates circulation in the
potential flow system. The circulation along a closed path that starts at the north pole,
ends at the south pole and encloses both the impact interface and the ring bubble is
constant after the initial instant of impact. This circulation increases with decreasing
Z,. Just after initial impact, the source of this circulation is a bound vortex in the ring
bubble. However, by the end of the calculation as much as one-half of this total
circulation is associated with the vortex sheet. The liquid-liquid impact process results
in a loss of energy in the potentiaf flow system. The energy loss increases with
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increasing Z, and its value at Z, = 1.75 is about 17% of the total flow energy. In a
compressible flow this energy would primarily generate pressure waves. It is thought
that in the potential flow system this energy is radiated away suddenly by the infinite
sound speed. When Z, is small (on the order of the maximum bubble radius), the
impact interface forms very close to the wall and the pressure on the wall directly under
the bubble increases suddenly upon initial impact. This high-pressure region is quite
small in radial extent. As Z, increases, the pressure rise at the wall due o impact is
spread over a larger area. This may explain the enhanced potential for cavitation
erosion with small Z, values.
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Appendix A. Derivations of the integral equations with regular and non-
regular surfaces

Let D, and D, be defined as the interior and exterior regions, respectively, in a three-
dimensional space. An interior boundary dividing D, and D, is denoted by S. The field
point is represented by p which can be inside D, or D, or on S, while the source point,
q. is on S only. Based on potential theory (Ginter 1967; Burton & Miller 1971), the
single-layer and double-layer potentials are, respectively,

Motp)] = me o(g)ds,, A1)
and Watp) = | LD otq)as, A2
[ ]

where « is the density (unction. Assuming that o is sufficiently continuous on S, as the
field point p approaches the boundary S from D, or D,. the single-layer potential and
the normal derivative of the double-layer potential are continuous across the

boundary,
o)y = V(0)|in = V(0) | n (A3)
aWMo) oW(o) Ll 4C))
- -»—— Ad
a'p 3 &'p ing b" st ( )

wherein (A 3)and (A 4), S, int and ext subscripts represent the limit values of a function
of p for the cases of p€ S, p~ S from D, and p —+ S from D, respectively, and n, is the
outward normal to S at the field point p. However, the double-layer potential and the
normal derivative of the single-layer potential are discontinuous as p crosses S. These
discontinuities satisfy the following relations:

Ma)| 3o M)
- —2xr = 20 \
o, le -t x N, e +2ro (A 5)
W(o)ls = W(0)|a + 280 = W(0)|,,— 2K0. (A 6)
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According to these fundamental relations, the modified conventional and hypersingular
boundary integral equations with common points are derived as follows.

A.l. Modified CBIE with a common surface

In view of the fact that the surface § is composed of a regular surface S, and a common
surface S* N S~ (see figure 15), and on the common surface is imposed

¥'(p) __%
o, o,

the CBIE (19) can be rewritten as, for pe D,
wdin - | [Gu.q)lf‘gﬂ—”—g:ﬂ«a)]ds.
3 ¢

66(1. q)

#'@-9(@ds;. (AT
As p approaches S* from D,, the discontinuity oondmon (A 6) requires that
oG oG
—_— - | — ~ . AS
J‘th‘ds'llu -’; (] ‘ ] 2’* ( )
Thus, the integral along S* in (A 7) becomes
[ Eeyw-4nes;] - 2929 (4e()- 4-1a35; |
" a"q [T &v. f

—2x(¢*(p)-¢"(P). (A9)

The substitution of (A 9) into (A 7) yieids the modified CBIE with a common surface
S*nS-for peS*:

2°

24"+ 47l = [ 16,0 B0 -2TLD g gyes,

- J 3GP.9) 4+ (q) - 4-(eN4S;. (A 10)
3 bl.

For pe S, the left-hand side of (A 10) becomes 2xg{ p) and there is no change on the
right-hand side.
A.2. Modified HBIE with a common swiace

A hypersingular integral equation with s common surface can be derived in a similar
fashion. First, the directional differentiation of (A 7) with respect to a, with pe D,

yields
«ﬂ j[?ﬂz_t!%!. Q'E(_L.L“')]ds

,.:g%.%(m) $@dS:. (A1)

Then, let n, be an outward normal to the boundary S at the inner limit of p on S and
punlhelnmtofpfmb,alonuhcno«maln,totheboundlrys From (A 5), only
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the derivative of the single-layer potential, the first integral in (A 11), has a jump
according to the relation
gt % A 12)

ff;fds(m an,’

while the other two integrals along S, and $* in (A 11) are continuous according to
(A 4). Thus, (A 11) becomes

(p) j [bG(’,q)M(q) 3G(p.q) ¢(¢)]

C' an m’ &'. m &'
¥*G(p.q) LI
T )y o m, (#°(q)-97(q))dS;, (A13)

where ¢, satisfies
0, peD,
c, ={ 2%, pe€S,
4x, peD,US".

Appendix B. Derivation of the equation for the energy loss
The first step in the analysis that demonstrates the energy loss due to impact is to
take the gradient of the pressure impulse equation (15):
Vg = -V/p+ V¢, (B1)

where ¢’ and ¢° are the velocity potentials of any point inside the fluid domain at the
instants just before and just after the impact, respectively. Next, the difference in the
kinetic energy per unit volume before and after the impact, Ae,, is caiculated by
squaring (B |) and rearranging the terms:

Ae, = VP — (V4 = —V1-9¢' +(VD)*/2p. (B2)

Since the boundaries of the low move only an infinitesimal amount over the time of
the impuise, the total energy loss is found by integrating ¢, over the simply connected
volume bounded internally by S,. S* and S~ and externally by 5, and S :

o » 4
The first term on the right-hand side can be manipulated using the chain rule to obtain
fw-vwav-f v-(lvndv-f g av. (B 4)

] o o
The last term on the right in this equation is equal to zero since the flow field is
incompressible before (and after) impeact and D is & simply coanected region. Using
Gauss's theorem and the fact that /=0 on S, and S_, V¢ :a_=0 0n S_, and

n. = —n, and I* = [~ on the common surface, the first term on the right of (B J) can
be written as

[vropave| rowr-ver)ees ®9
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The second term on the right of (B 3) can be manipulated in a similar manner. First,
the chain rule is used to obtain

fo(w)'dV—J'Dv-(lvr)dV—LN'ldV. (B 6)

The second term on the right of this equation is equal to zero since the Laplacian of
the pressure impulse is zero in D, as can be seen by taking the divergence of (B ). Using
Gauss'’s theorem, and the conditions / = 0 on S, and S,

Vi-n,=p(V¢'-n,~Ve"-n,)=00nS,

(see (B 1)), and [* = I~ and n_ = —n, on the common surface, the first term on the
right of (B 6) can be written

Jv-(IVI)dV-j I*(V1*—=vI7)-n, dS. B7
0 A

This last integral can be further manipulated using (B 1) and the matching condition
on the common surface (8) just after impact to obtain

J' v.(IVN)dV = pJ’ [*(9($)* V(@) )-n, dS. (B3)
/] s*

Finally, plugging (B 5) and (B 8) into (B 3) the equation for the change in kinetic
energy is obtained:

8E, =} f [*(9@)* = V(@) )-n, dS. B9
s‘

Appendix C. Representation of the hypersingular integral equations in
terms of eiliptical integrais

Assume a cylindrical coordinate system (r, 8, z), and let the three unit vectors in the
r-, 8- and z-directions be denoted by ¢,, ¢, and e,, respectively. Assume that both the
source point ¢(r,.6,.2,) and the field point p(r,, 6,.2,) are on the surface S, and that
8, = 0. Since the problem is axisymmetric about the z-axis, the two unit vectors
representing the outward normals to S, at p and g are given by a (sina,,0,cos,) and
n(sina,,0,cos a,), respectively, where a,, (or a,) is the angle between n,, (or a,) and the
positive r-direction. With the above assumptions and definitions, (28) can be written as

6.
[ #0528Das, - [ inx9, 6000 In, <7, Glr. 45,
. 8 Gcosf
- I,[ma,«ago: —cosa,a(————i-;’: )]%ds,. ((of )]

The atove equation can also be written as

[ #9078 D s, [ [ -sn, Fveona, L2 bas,  (c2

by using the relation V,G(p.q) = —V,G(p,q). This latter equation is easier to treat
than (C 1) as 7, 0.
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The integral equations in §2 can be integrated analytically in the #-direction and
represented in terms of elliptical integrals. Introducing the elliptical integrals of the first
kind K(m) and the second kind E(m) as

] dp
E(m) = J' " (1 ~misin phap, (C4)

where m* m dr,r /A and A = (r,+r)' +(z,—2,)", the terms resulting from the 6-
integrations in (21) are

1, = 4K(m)/ A\, (C9)
I, = [8(K(m)— E(m))/m* — 4 K(m)}/ A\. (C6)
Substituting these relations into (19) and (21) yields
b0 = [ [C L, 40|at,, €7
a¢(p) aall) aal )]
a" [ "o, +F,q &, ]dL,. (C8)
where L is an intersection curve between S, and the plane § = 0, and
Coe=reh c9
D,y = —r 2l /2n,, (C 10)
E,, = r,dl,/on,, (C11)
With the relations F, = —r(—sina,dl,/dr, +cosa,dl /dz,). (C12)
S ( Em) K(m)) C13)
dE(M) - E(M);K(M). (C 14)

the partial derivatives of /, and /, needed to cakulate D, E,, and F,, can be expressed
as follows

g:_: - 4(;,{; r:) :'(,)M) 2(K("2‘ > Em) (C195)
gs - 4(} = z_,g f.()m)' (C 16)
g'!: - 4(r r.) gm) 2(“"2"'5("')) (17
6a_zl_:_ 4(: -lz ,..‘3)'") (C18)
o-tougm s
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ABSTRACT

Some aspects of the interaction between bubbles and
shear flows wete simulated experimentally and nu-
merically. In the experimental set-up the shear flow
was obtained using a vortex ring. A spark-generated
bubble is produced where needed and interacts with
the ring. The degree of interaction between the vor-
tex shear flow and the bubble is modified and inves-
tigated. The dynamics of both the vortex ring and
the bubble are observed using dye injection and high
speed photography. Bubble deformation is seen to
significantly increase with shear. These observations
are used to check a 3D numerical method developed
to study large bLubble deforinations. Good compari-
son between the model and the experimental obser-
vations can be seen.

INTRODUCTION

Practical liquid flows contain many microscopic bub-
bles which respond dynamically to the flow. These
bubbles can grow explosively and collapse, leading to
cavitation noise, ercsion and decrease in performance.
A better understanding of the bubble dynamics may
give new solutions for delaying cavitation inception
or using cavitation’s destructive effects for useful pur-
poses. In practice, unlike for most cavitation mod-
eling studies, the bubbles grow and collapse in non-
uniform flows and do not remain spherical or axisym-
metric. Such flows can be due either to the presence
of nearby solid walls flow or to vorticity shed from
obstacles{l]. In this paper we will consider bubble
behavior in such a flow both experimentally and nu-
merically. To do this a fundamental experiment con-
sisting of the observatioa of the interaction between
a vortex ring and a bubble is considered. The results
of the experiment are then compared with those ob-

*Students on Practical Training from Ecole Navale, Brest,
France.

tained with a numerical model based on the 3D free
surface dynamics numerical code 3DynaFS.

EXPERIMENTAL STUDY.

A Plexiglas cylinder equipped with a 2.5¢m radius
piston was attached to the top cover of a Plexiglas
tank of inner dimensions: 37.6cm x 37.6cm x 27.3cm
filled with water. A shaft is attached to the piston
and crosses the cover of the tank through a sealed
hole to interact with an electro-magnet. A magnetic
plate located outside the tank holds the piston/shalt
assembly in its high position when the electro-magnet
is powered. The pressure on both faces of the piston
can be controlled by pumps. Once the electro-magnet
power is turned off, the piston moves due to the differ-
ence of pressure between its two faces and pushes the
water out of the cylinder, generating a vortex ring.
To minimize pressure variations behind the piston an
additional reservoir maintained at the same pressure
is connected to the volume behind the piston. The
cylinder has an sharp lip exit to enhance the roll up
of the fluid vortex generated at the lip. This results
in an vortex ring with a diameter slightly larger than
that of the cylinder {2].

The water in the tank is degassed. A gap betieen
the surface of the water and the tank cover is left to
allow air evacuation and creation of a partial vacuum
in the tank. Most of the case studies presented here
were conducted with a partial vacuum (25000 Pas-
cals) maintained in the tank. Two manometers are
used to read the pressure in the tank and behind the
piston.

The spark generated bubbles are produced using
two tungsten electrodes submerged in the tank which
can be manipulated from outside the tank to be
placed where desired. The spark is produced by dis-
charging during a very short time period (=~ 10™s.)
a high voltage (6000 volts) from a series of capacitors.




The pressure and temperature of the plasma gener-
ated by the spark are much higher than those of the
surrounding water. This forces a vapor/gas bubble to
grow until fluid inertia prevents further growth. The
bubble then reaches its maximum radius with an in-
ternal pressure much lower than the fluid pressure. It
then starts to implode and its behavior is governed
by the pressure differences as for a cavitation bub-
ble. This classical way of generating simulated cav-
itation bubbles allows one to choose precisely when
and where the phenomenon will occur which is es-
sential to coordinating the positions of the bubble
and the ring and the starting time of the high speed
camera.

Measurement equipment
The pressure at selected locations in the tank was
measured using a BNC model 101A05 transducer.
The pressure signal was recorded using a digital stor-
age oscilloscope and a PC with a GPIB interface.
A triggering line (Fig. 1) allows one to synchronize
the departure of the piston and the triggering of the
spark generator. It includes the piston magnet, the
transducer power supply, a delay generator, an am-
plifier and a power generator. The operator turns off
the magnet power supply at time T3. As the piston
starts to move down, a pressure pulse is created in
the tank by the fluid impulsive motion which is de-
tected by the transducer probe 3.3 x 10—*s later the
time to travel the distance (50cmm) between the piston
and the probe. This delay is very small compared to
the time needed for the ring to reach the electrodes
(= 0.55). The output of the transducer is amplified
to trigger the delay generator. The output signal, a
very short pulse, then triggers the spark generator.
Visualization was obtained using a high speed cam-
era, a video camera and a regular reflex camera. High
speed photography was employed using a HYCAM
2 camera with a rotating prism capable of 11,000
frames per second. Before taking a film with the
high speed camera, a video camera was used to check
each case and to determine in first approximation the
characteristics of the ring (its velocity, diameter).
The pressure signal detected by a transducer lo-
cated on the axis of the vortexring was used to deter-
mine the correct time to initiate the spark-generated
bubble for a given vortex flow configuration. After
the initial pressure signal following the ‘impulsive’
ejection of the water from the cylinder the transducer
detects the pressure field of the translating vortex
ring. When the ring plane is at the level of the probe
the detected pressure is at its minimum. The shape

of the pressure signals depends on whether or not the
ring is cavitating.

EXPERIMENTAL RESULTS

A total of seventeen high speed movies were taken
covering a large range of shear rates obtained by vary-
ing either the relative distance between the generated
bubble and the initial vortex ring center or by vary-
ing the ring circulation. The ring diameter varied
between 6 and 6.4cm while its velocity varied be-
tween 0.2 and 0.8m/s giving ring Reynolds numbers
between 1.2 x 10* and 5 x 10*. A reference movie was
also taken with the bubble isolated in the absence of
the vortex ring.

On three of the films and on many of the videos
very small gas bubbles were left under the piston
when the movie sequences were taken. The visual-
ization of the motion of these bubbles allows one to
observe their trajectory around the ring. The ex-
istence of a “viscous core” was apparent from the
velocity profile whether or not the vortex ring was
cavitating. For the cavitating cases, the “viscous
core” surrounded the vaporous/gaseous core. A typi-
cal trajectory of the small bubbles is shown in Figure
2. Also shown in this figure is a sketch of a bub-
ble and the particle trajectory line (T'). Figure 2
also shows the geometric characteristics of the bub-
ble/ring positions. D, is the distance between the
bubble center and the viscous core center when the
bubble is at its maximum volume and has the equiv-
alent maximum radius Ry, . D; is the horizontal
distance between the bubble and the center of the vis-
cous core. The normalized quantities D; = Dy/Rm
and D; = D3/Rm characterize the bubble / vortex
ring interactions. It is expected and confirmed be-
low that smaller D;and D, correspond to stronger
interactions and lacger bubble deformations.

Bubble shape deformation
Figure 3a-c drawn in the ring reference frame shows
the bubble motion and deformation with time for
three selected cases of increasing bubble/shear inter-
action. The electrodes position shown on each graph
is the one at the instant of the spark generation. The
vortex ring side view indicates the position of the ref-
erence frame.. .
As can be seen from the pictures in Figure 4a (
Dy = 2.16, D; = 0, Vying = 0.28m/s) and from the
contours in Figure 3a , the bubble remains practi-
cally spherical during its growth. The interaction is
weak due to the relatively large distance between the
bubble and the ring, and also due to the relatively




small circulation of the ring. The first collapse is too
fast and no significant deformation of the bubble is
seen until the rebound when a reentrant jet appears
on the bottom face of the bubble followed after the
rebound by an outgoing jet on the top face. It ap-
pears that during the first bubble oscillation period
the bubble translation velocity is smaller than the
vortex generated fluid velocity. The bubble therefore
sees a flow moving upward. The jet direction (includ-
ing the reentrant and the outside jet) is on a path-
line of shear flow, and the bubble motion after the
collapse follows a particle path line while oscillating
and cutting itself in two.

In Figure 4b (Dy = 238, D7 = 1.5, Vpin, =
0.78m/s) the bubble first grows spherically, then it
starts to stretch into an ovoid shape: the bottom face
is less curved and the top face more curved than in
the spherical case. Here the distance D is not too
different from the previous case but the circulation
in the vortex ring is about three times larger. When
the bubble volume decreases, the stretching due to
the shearing action becomes more pronounced and
two reentrant jets (or rather a constriction along the
bubble periphery) appear. This constriction appears
along the pathlines (T') around the bubble. The bub-
ble then rebounds with a dumbbell shape.

In Figure 4c (D; = 1.1, D; = 0.37, Viip, =
0.82m/s) the bubble appears to be stretched more
and more in the pathlines direction during its growth,
with the top region more stretched than the bottom
one, and the top right part growing more than the
left one. When the bubble collapses, its left part
continues to be sheared by the flow into a pathline
direction and a beak forms at the top left part and
becomes more pronounced once the volume of the
bubble starts to decrease. Then, there is a constric-
tion all around the bubble which appears first on the
top face of the bubble. The bubble then cuts itself in
two and rebounds as two side-by-side very distorted
bubbles (or bubble clouds). The left one then touches
the cavitating ring and splits again into two parts.
The deformations of the bubble are more significant
in this case than in the two previous cases, because
the bubble is closer to the center of the ring core and
sees a strong shear flow. In addition, there appears
to be a “venturi effect” between the bubble and the
viscous core that further increases the stretching of
the left part of the bubble

Within the margin of errors of the measurements
comparison of the time variation of the average ra-
dius of each bubble shows no significant effect of the
presence of shear on the bubble period. However,

indications of a lengthening effect of the bubble pe-
riod can be seen on the characteristic distances be-
tween the bubble ‘center’ and the two upstream and’
downstream points along a particle pathline (direc-
tion (T')) . This effect however seems small in the
cases presented here and should be investigated fur-
ther.

Physical explanations

The observations made above can be explained by
considering the velocity and pressure fields around
the bubble. The motion of each point on the surface
of the bubble is the result of the combination of the
underlying (shear) fluid velocity and of the velocity
of the bubble growth or collapse. The effect of the
underlying fluid flow (whose characteristic speed is
about 2my/s) is minor during initial bubble growth
and later bubble collapse phases, but becomes most
important at the end of the growth and at the be-
ginning of the collapse where bubble wall velocities
reach a minimum. Indeed, right after the spark gen-
eration, the speed of each point of the bubble surface
is very high (about 40m/s). It then decreases to zero
at about the maximum radius. and then increase dur-
ing the bubble collapse. For a bubble in a uniform
flow, the existence of the flow reflects on the bubble
shape by a larger bubble growth in the downstream
direction and by a flattening of the bubble shape in
the upstream direction. Later on due to inertia, the
downstream part that has extended further collapses
faster forming a reentrant jet directed upstream in
the plane of symmetry of the bubble.

When the flow is not uniform, a similar phe-
nomenon occurs but is stronger on one side of the
bubble than on the other due to the typical asymme-
try of a shear flow. In addition, the possibility that
the underlying shear flow becomes at some point dur-
ing the bubble history stronger than the bubble wall
velocity creates the possibility of an underlying flow
generated jet which can be opposite to the one de-
scribed above and directed downstream. In the case
of the figures shown here the velocity profile seen by
the bubble decreases from left to right. When the
bubble starts to grow, the speed of each point is much
more important than the velocity of the fluid flow:
the bubble is therefore almost spherical. Then, when
the speed of each point decreases, the influence of the
fluid flow increases. The top part of the bubble grows
more than without the presence of the basic flow and,
due to the shear, the left part grows more than the
right one. In addition the top part is more stretched
than the bottom face because on the top, the speeds




add up while they subtract on the bottom. The op-
posite is true during the collapse where velocities add
up on the bottom part of the bubble and subtract on
the top.

As the fluid flow is moving upward, the reentrant
jet is expected to appear on the top face [7, 10]. How-
ever, due to the strong shear the left part of the
bubble is prevented from collapsing forcing a com-
pensating middle of the bubble constriction all along
the bubble, with a tendency to form reentrant jets
on both ends of the bubble along the pathline. This
constricted shape of the bubble is similar to that ob-
tained with a bubble collapsing between two walls.

NUMERICAL MODELING

In order to model the bubble/shear flow interac-
tion described above, DYNAFLOW’s 3D Boundary El-
ement Method (BEM) code for the description of
free surface deformations, 3DynaFS was used. The
BEM method uses Green’s identity to solve Laplace’s
equation. If the velocity potential, ¢ , or its normal
derivative is known on the fluid boundaries (points
M), and ¢ satisfies the Laplace equation, then ¢ can
be determined anywhere in the domain of the fluid
(field points P) using the identity:

d 1 .

1
where ar = Q is the solid angle under which P sees
the fluid. a = 4, if P is a point in the fluid, a = 2, if
P is a point on a smooth surface, and a < 4,ifPisa
point at a sharp corner of the discretized surface.

If the field point P is selected to be on the bound-
ary of the fluid domain, then a closed system of equa-
tions can be obtained and used at each time step to
solve for values of 3¢/8n (or ¢) assuming that all
values of ¢ (or 8¢/0n) are known at the preceding
step. The method was described in details in previous
publications [4-7]. The above equation is subjected
to kinematic and dynamic boundary conditions on
the bubble wall. In absence of underlying flow the
liquid pressure at the bubble interface is given by the
unsteady Bernoulli equation which is used to solve
for D¢/Dt, the total material derivative of ¢,

D P, 1
2=Byivep= B gl vep. )

Using an appropriate time step, all values of ¢ on
the bubble surface can be updated using ¢ at the
preceding time step and D¢/Dt. New coordinate
positions of the nodes are then obtained using the

position at the previous time step and the knowledge
of the boundary velocities.

This time stepping procedure is repeated through-
out the bubble oscillation period, resulting in a shape
history of the bubbles. This method has been ex-
tended to the case where the bubble is embedded in
an underlaying fluid flow characterized by its veloc-
ity field V and pressure field P, . If we then define
bubble flow velocity and pressure variables, Vi, and
P,, as follows:

PB=P-P. (3

and assume that this bubble flow field (V}, and P) is
potential, we can use the BEM to study the bubble
dynamics. Within this restriction, Equation (2) is
replaced by a modified Bernoulli equation

Vp =V -V,

P
v [% +% [ Vp I?+Vo - Vp + f] = Vpx(VxVo).

4

THE VORTEX RING

In order to simulate the problem at hand in the above
described experiments, the flow field of the moving
vortex ring was modeled using the following classical
expression for the velocity potential at the point M
produced by a vortex ring (R):

// e;.PM PM
~1 /| pMp®”

where T is the circulation, and S is any surface lim-
ited by the ring vortex ring line (R), and e, is the
tangential direction along (R). This enables one to
determine the velocity and pressure field outside of
the “viscous core” region of the vortex ring. The
velocity in the core region is modeled using a match-
ing solution to an infinite vortex line model. Since,
for a non-zero value of the viscous core the velocity
obtained from the inviscid solution is not the same
when the viscous core is approached from the inside
of the vortex ring as from its outside, the pressure
at the center line was set to be the average value
between the pressure at each end of the core diame-
ter. The two points on the edge of the viscous core
were then connected to the value on the axis using
two sections of parabola whose tangents are horizon-
tal when r = 0. These approximations were needed
to start the computation but had little influence on
the results since the studied bubbles were outside of
the viscous core most of the time.

(M) =




NUMERICAL RESULTS
In order to test the code the conditions of Fig. 4c
were reproduced, then the circulation was reduced
to obtain other cases in the same physical condi-
tions but with a smaller circulation of the vortex
ring. This simulates qualitatively only the two other
cases shown above. The cross-sections obtained with
a plane perpendicular to the ring axis and which con-
tain the initial bubble center are shown in figure 5a-c.
The viscous core radius was assumed to be 0.6cm, a
value given by movie analysis. The ambient pres-
sure, ring velocity and initial position of the bub-
ble are those of Fig. 4c. A set of runs was made
with the bubble discretized with 162 nodes and 320
panels. The conditions of the run were as follows:
ambient pressure:12, 600Pa, minimum bubble radius:
1mm; Maximum bubble radius, R,=1cm, gas com-
pression constant £ = 1.25, initial gas pressure,
Pyo = 2.58 x 107 Pa, viscous core radius, A; = 0.6cm,
Ring radius, 49 = 0.031m, ring translation speed:
0.8m/s, bubble radial distance from ring : 0.042m,
bubble vertical distance from the ring :0.025m .

Figure 5¢ shows simulations for these same ex-
perimental conditions as in Figure 4¢ with ' =
0.12m3/s., while Figures 5a and 5b show the same
conditions but for I' = 0.25m?/s. and I’ = 0.10m?/s.
As in the experiment Figure 5¢ shows elongation of
the left side of the bubble in the shear flow direction.
The formation of a beak at the end of the bubble
growth is also evident but not as pronounced as in the
experiment. Later a constriction in the bubble shape
along the fluid pathline is also apparent. The over-
all comparison between this numerical modeling and
the experiment is encouraging. However, the strong
shearing effect on the beak preventing the bubble top
from collapsing from the left side is not as strongly
reproduced in the numerical simulation. This is most
probably due to the fact that the simulation neglected
the bdubble vortex ring behavior and did not include
any modification of the flow due to the growth of the
ring bubble near the spark-generated bubble creating
the venturi effect we mentioned earlier.

At the smaller circulation the tendency of the bub-
ble to elongate and then cut itself into two is clearly
apparent as in the experiments.

CONCLUSIONS
The study presented here has enabled us to achieve
two main objectives:

1. The behavior of a bubble in a particular shear
flow was observed and tested

2. The capability of the program 3DynaF$S to sim-
ulate such a flow was demonstrated.

The shear flow was seen to significantly influence
the bubble behavior. During the collapse and re-
bound the bubble shape deformation was seen to
always be significantly affected. During the bubble
growth the bubble behavior and shape is the more af-
fected the larger is the degree of interaction between
the bubble and the vortex; that is the closer is the
bubble to the vortex core center, or the greater is the
vortex circulation.

ACKNOWLEDGMENTS

We would like to acknowledge the support of the Of-
fice of Naval Research, Contract N00014-89-C-0025
and Dr. Edwin Rood’s interest. We also acknowl-
edge the French Ecole Navale for making the stay at
DyNaFLow of the last two authors possible.

REFERENCES
1. P.Kezios, and W.R. Schowalter, “Rapid Growth
and Collapse of single Bubbles in Polymer Solu-
tions Undergoing Shear,” phys. Fluids 29 (10),
3172-3181, Oct 1986.

2. K. Kalumuck, and G.L. Chahine, “Cavitating
Vortex Ring Formation and Dynamics.” ASME
paper, Cavitation and Multiphase Flow Forum,
Toronto, June 1990.

3. G.L. Chahine and T.O. Perdue, “Simulation of
the Three-Dimensional Behavior of an Unsteady
Large Bubble Near a Structure,” in “Drops and
Bubbles” edited by T.G. Wang, A.I.P. Confer-
ence Proceedings, 197, 169-187, 1989.

4. G.L. Chahine, “Nonspherical Bubble Dynamics
in a Line Vortex,” in Proceedings of the Cavita-
tion and Muiltiphase Flow Forum, Toroato, June
1990.

5. G.L. Chahine, *“Numerical Modeling of the Dx-
namic Behavior of Bubbles in Nonuniform Flow
Fields" ASME 1990 Symposium on Numeri-
cal Methods for Multiphase Flows, Toronto,
Canada, June 1990.

6. G.L. Chahine “Dynamics of the Interaction of
Non-Spherical Cavities,” in “Mathematical Ap-
proaches in Hydrodynamics," ed. T. Miloh,
SIAM, Philadelphia, 1991.




= e

Fig 2. Particle trajectory around the ring viscous core
and sketch of bubble position parameters.
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Fig 3. Bubble contours at various times from HS se-
quences of Fig 4. 3)D; = 2.16, Dz = 0, V;n, = 0.28m/s;
b) Dy = 2.38, D; = 1.5, Viing = 0.78m/s; c) Dy = 1.1,
Dy = 0.37, Vying = 0.82m/s. :

Fig 5. Numerical simulation of bubble/vortex ring in- ‘
teraction a) circulation: 0.025 m?/s; b) circulation: 0.10
m?/s; c) circulation: 0.12 m?/s : corresponds to Fig 3¢
and 4c.
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Asymptotic Study of Bubble Dynamics in

a Nonuniform Potential Flow
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abstract

The dynamic behavior of a bubble in a sonuniform flow is stad-
ied using a matched asymptotic expansion method, the small pa-
Tameter ¢ being the ratio of the initial bubble radius, ro, to the
initial bubble distance to the body wall, ly. The theory is applied
to the problem of a bubble collapsing in the shear region sear a
semi-infinite biufl body advancing at a constant speed. ts ob-
tained at orders ¢° and ¢ show the impotition of a rotation on the

bubble and the formation of a jet directed upstream and towards

the wall. As the arder of the €XPANsions ipcreases, more com

aspects of the interaction between the bubble and the flow ln’ll:
covered. Analytical results at order ¢? are gives while numerical
solutions of the equations at that orde- are still not completed and
:’;vg“‘;:“dy“l’ to order ¢ for the cuse of a bubble near a Rankine

Introduction P

The understanding of bubble and cavity dypamics has Pmcﬂla:‘
uiceuchm and engineers over the past several decades. .
ever, due to the complexity of the general problem, most bub-
ble drnmpc studies have either neglected bubble deformation aad
based their approach on isolated spherical bubble dynamics, or
considered axisymmetric deformations. With the advent of com-
p‘u.uuonal techniques and facilities, significant attention has been

ven over the last decade 10 the study of axisymmetric bubble

ynamics, particularly in the vicinity of a solid isfinite wall or &
{reg_surface (Shima et'al., 1977, Guerri et al., 1981, Chahine et al.,
1952, 1983 ; Blake et al., 198G, 1987, Wilkerson, 1989, Duacan,
1990). However, deviations from this simplifying axisymmetry as-
sumption which render the problem fully three-dimensional aad
arc expected to siguificantly affect the results were not consid-
ered. Or instance, near a solid wall and in the presence of a pres-
sure gradient or a nonuniform flow a relative verodty between the
bubble and the flow exist leading to significant three-dimensioaal
ercf'lb on the bubble dynamics. To address this general problem
a fully three-dimensional approach is being developed (Chahine et
al. 1985. 1990, 1991). However, this method is purely numerical
u.d-shg.;ld be supplemented by an asalyucal approach, eves if
Approximate. since this will enable. at a much lower cost. a better
understanding of the influence of the parameters in the domain of
validity of the method.

l.n thi: paper we will preses: such an analyvtical study of the
growih and collapse of a bubble in a gene:d potential flow in the
viciuity of a solid object. This approack is based on the metkod
of matched asymptotic expassious. The small parameter of the
€Xpalsiok. €. is chosel, o be the ratio of the nitial bubble radius
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to its distance to the wall. This approach follows earlier work
by Chahine and Bovis (1983) who studied the axisymnmetric case
of the collapse of a bubble near a wall, and later the studie» of
Clabine et al. (19 ) who considered the dynamical behavior of a
bubble doud.

At every order of approximation the problem is decompused
into two subproblems: an inner problem wlere the chauracteristic
length is the characteristic bubble radius and an outer problem
where the characteristic length is the standofl distance beiween
the bubble and the wall. The effect of the wall appears ouly
through the limit condition at infinity for the mner problem. For
the outer problem the bubble appears as a singular perturbation
at the origin. The calculations are performed in a frame of ref-
erence attached to the bubble so as to follow its belavior over
a longer period of time, otherwise the mathematical expressions
become non-univocal as soon as any bubble wall point crosses the
origia of coordinates. The bubble is assumed to be filled with va-
por of the host liquid and non-condensible gas with a polytropic
cozpression law.

he results of the theory presented Lere can be applied 10 any
poteatial flow which bas a plane of symmetry parallel to the flow
direction (non fundameatal assumption only used to simpiily the
analytical expressions). As illustration the probiem of a bubble
collapsing near a semi-infinite blufl axisymmetric body iu a uni-
form flow field is considered. In that case the bassc potential flow
used is that of a source in 3 uniform fow field.

Problem formulation

Let us consider a dasic flaw field (low in absence of the bubblc)
that is potential, with a velocity vector Vo{ M) deriving from the
potential do(M ). Let the pressure be hg ) and the liguid density
p. The velocity potential satisfies the Laplace equation and the
Berzoulli equation:

) Po
~({Véo)? + = = constant. 2)
2( o) , c

Thae vo-flow condition across the submerged bod: wal n.
{You f}ea = 0.

Let ¢, V' and p’ be the potestial. lhe speed and jressure in
preser.ce of the bubble. and le: r = R'{1, &, 9') br the bubitrte
Wao equation. We now have simila: equation: as (1 3¢ wati. thew
com.plete flow variables ln additiot. 3 fourth equatur: desciibes
the contiuuii) of the yormal velocities at the bublbie wil

(K}
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and far away from the bubble, we have ¢/ = ¢dy. '
We will consider now the dubble isl, ¢y, difference of the
potentials ¢ and ¢y.
h=¢ - (3)

Since at infinity V) and ¢y decay 10 zero, and the pressure is po, the
Bernoulli equation becomes:

8¢ 1

{3 +3

U we limit the study to the case where the besic flow is steady,
840/t = 0, the right hand side of the equation is a constant of
the dasic flow field, which can be written for instance at any selected
reference point, O. i
Let us choose now a general frame of reference R with rotation
relative to the fixed frame defined by &, and whose origin O bas a

translation velocity V, (see figure 1 for definitions). Since:
Vw=V.+Jx0M. "

\We now have the tdaionships:.

(TA+ 33+ 9 Vot L = 310+ B ()

8¢ [}
2 . -OL:-V..W-(axom-vo. (8)
8R' -
2Le = Ra+Veaxol, ®)
where ¢ is the budble nbdlyéo&lﬁdin the mowing frame R. The
system of equations of the problem then becomes:
A¢ =0, (10)
ll'.l.n $=0, (11)
{Vé:B}uau =0, (12)

(V8- Rrun = 22 4 (V- Vi) 4 3% OM) Whom, (1)

{%? +§(v¢)’+(v?,- V. -3x0M) Vet
1 0,1)
+3(V¢ - V(0.0 + L"} = ".‘T. (14)

Pressure inside the bubble

We will assume that the pressure inside the bubble is :rﬂil"! saiform
) 2

and thus only depends on time. p,,;; being the initial pressure inside

the bubble, we can write:
Pt = 5y + 95, (15)

where p, is the vapor pressure and #0 the initial soncondensible gas

pressure which obeys the ic law PV? = conastant. At any
Um:‘ the balance of pmmy‘::p:hc surface of the bubble can be
written:

KR.t)=p, +9, - 2C (16)
where C is the local curvature of the bubble surface and ¥ the surface
tension. We finally obtain for equation{14):

r{%?+-;(W)’+(V.,-V.-axoll,-vo+

+3%3 = V0.1 an = (30(0,1) = un )+

V-t 2] v-t )
+ (P = )1 - ;F’+ :;('oC- 70_—. (17

‘Matched Asymptotic Expansions

We consider the case where the ratio ¢ between the bubble redius v,
and the distance g between the center of bubble and the wall is sinall:

s=n/b<l. (18)
‘Using the matched asymptotic expansions method the problem can
be subdivided into two subproblems: an énner problem where the
characteristic length is the bubble radius #o and the wall is comsidered
to be at infinity, and an outer problem where Lhe characteristic length

is lo and the bubble appears qply as » singular perturbation at the
origin.
. Outer problem

In the outer problem we caly have Equations (10)(11) and (12) to
satisfly. They can be written using non-dimensional variables v = lg ¢

and ¢ = $ore 6, 25

Aé=0, (19)

'l_l-u.l’a =0, (w)

{Vé: A)euyeet = 0, ()
Inner problem

In the inner problem we noudimensionalize Equatious (15} through
(18) using the following normalizations:

R Y o : the initial bubble radius
] = App Ap characteristic pressure
change in the initial fow
t =To _l' To :characteristic collepse time
¢ = r}¢/To
Vo = wl wy :characteristic iuitiel
fow velocity
' W = MOV, M :characteristic initial flow
; velocity gradient
_ . B(Og)-piai = 8pAp(1) '
Matching conditions N

The matching conditions between the inner aud the outer slutions
- e being nothing but two approximations of the same velucity
m ¢ which are valid in two separate regions - is obidined by

ly writing that there exists an istermediate region chatactericed
by r°, where both solutions are valid. For the smner problem, this
region must be at infinity so that v* > ry, whereas fur the owter
Prqal:n. it must be close to the origin 0 #* € l. This cun be
written as:

n<rCh (22)
Oaeee(?) = Gouier(r), Where, v = rof = o (24)
. » - r )

o R HD) = b ) @)

Taylor series expansions of the basic velocity field

Siace we are considering the case where the size of the mner regusi
is small compared to the characteristic length of the dasic flow, we
can express the velocity field in the inner region as a Taylur serics
expansion about the selected origin O.

Vol#) = %o(0) + 7- VV(0) + ;;. VUL0) 7+ Ol (25)

Let w be the cbaracteristic velocity of the flow field. M the rharar
teristic dimension of the velocity gradicut and N the chatartenaiu
dimension of the velocity bigradient. We wil! choos an orthigin.al
coordinate system fixed 1o a streamlive 30 that V, = V,011); w tha:
the z-axis is parallel to Vpl0).

‘70 - L .
; = ‘,03 w{t)e, (2

Note that wy is the characteristic vedocity of the 1wual flow and 1s &
constant whereas v, (1, is a functios: of e

Lo orde: to compute the various terms 1 Equation (14) we need
the following quactities.




Vo) =V, = Mry 7. 975(0)+ ;'; N 'r.v‘vV,(O)-?;--m)
(Vo(n-7.)-9¢ = % vs.(ur.i'-vv.(oné NTin ¥
VOV(0) -7+ -- ) (28)

1 .
3% - 00 = A 12 v.0v0). Aoy

+3Tdw N;r-v'wo(o)-‘a?,(on; (M To 7 9050))+-- X29)

If we consider the case where t i Lo
(One) Pla o where the problem is symmetrical about the

a 0 a

97,(0) = [ c o ¢ ] (30)
a 0 -q oty te

Choosing such an arbitrary gradient is consistent with havisg a po-

tential fow since we still Bave V-V = 0 and V x V, = 0. Rewritten
in polar coordinates we have:

2 G' ‘l
vVo(oy[:] - [ e ] -'[ c.f-.:i]
3 dgapa, L — 15+ g [y 'R Gy(0,v ~agay
s s 2+ g,
[.].vvv.(o)[.] .[" oz"’"] .'1[ n.] @)
¥ Jennyas 5 Jesagail 108? + 222 tesya Bo Juness
whers:
8a :
71.7‘_,' ﬂ'%. n.%. 7‘.%' (n)
Since the problem bas a plane of symmetry, we sball take o =
w(t)dy,
axou-ur(lyx")- (3
and define {2 as the characteristic rotation speed of the frame
ws00. (3},

Discussion on the relative sise of the problem scales

The problem has six sondimensional parametars ratios
selected size relative to ¢ the main parameter of the problem. The
choice of the relative tize was determined first by a least degeneracy
ptiaciple to conserve the maximam tarms, then by a relaxatios of this
coastraiat for some parameters ia order o be able 1o obtaia solutions
ia some practical pbysical coafigurations.

1. The characteristic length of the inner problem is much smaller

than that of the nlcr‘pmbhm:

-:.! - (39%)

2. The characteristic valocity of the initial Sow, w. ie of same order
a8 the charactenstc collapse velocity, ro/T

—— =52 0(1) (3)

3. The characteristic velocity ient at the scale of the mnacr
problem is far amaller than that of the mner problem:
HT,-%-,:;O(.) ()

& Poe

4. The charactenistic valocity bigradiest ai the scale of the imaer
probiem is fas smaller thas that of 1be mner problex.

2
NTor, = Hre = ue? = O (3
'.M.m

-_—h—-—
S. The charactaristic rotation speesd ay the scale of the inner prob-
lem is far smaller thaa the collapse valocity:

wTo= = O(s) (39)

6. The collapse velocity is directy related to the local pressure by:

a2
-,-L— = 0(1) (40)
Peoliapes

The bubble is considersd to be close to the subinerged body w0
that at leading order, ¢°, in the euter problem, the body is cunaidered
W be a flat . Al the pext order, the curvature is taben into
account. Mathematically, this means that the ratio of the bubble
standoff distance to the ‘al curvature of the body is of order ¢. In
the inner problem, the effact of the wall is seen first i order ¢ hur
the potential and at order &2 for the bubble radius. The effect of the
curvature oaly interferes at order ¢ on the potentia) aud will uuly
add a constant o the equations.

Resolution

We will use the following notations for the expansions:
é = dhtedi(F 0D+ 0D+ (41)
é = htedi (P 0D+ (004 42)
R o Rovoky(#,0,0)+3R,(5,0,)+ - (43)

Order ¢°

Outer peroblem at order ¢

The systam of equatioa (20) to (22) for the order sero becomses:
A‘ =0 * (41)
Jim by =0 (35)
{(Vé- ‘)hé' =0 (40)

t The geseral solution 1o this problem is a combination of sphetical

.hr-ouc_nv_hdWumlywhdmwimgsdukhl.u«

symmetric with respect 10 the wall at a distance ¥/ (rom the field post:
o = e Palcos®) (=L 4 )

g‘-(‘) '(N )(';,14':.—,1) 47)

P.(v) are the Lageadre polysomial of degree .

Inner problem ot order ¢*

; The system of equations (10) 10 (14) for Lhe order sero becomes:
o= 0, (40)
8do
-;(&)-lo. {49)

4 1 8¢ -8 Y
{'-5?*5(9.-".'-’)’)..., = BAN+PU -;,V:_-; PEALE ;7 1480)

From (48) we get the solution
bood i ge-dlR, 5h
where Ko(f) 1 derermised by the Raylogh- Plasset squation
- ! !. - . -3 1 . -3 1 ,
"*"’z" api)+ P iy -De ik -ius-;

witk the imtal conditoes B = 1 and L =0




Matching condition at order sero
If we replace the poteatials by their expansions, Equation (25) be-

2 RS+ b Zr+ b+ 0] = b
[&(i) + T+ () + ) (83)
The solutions are

= 1 1
b= E"m"(“‘)‘ﬁ? + <=1 )

&-§+c where C is a constant to be determined
Replace in (34):

B(1,C 4000

(24 S v b)) = b

@a.(t) Pulcon®) (1 + () + LT+ ) )

At leading ordar we than have:

C = 0 (s8)

b = c? (s6)
]

Bu(l) = dupeld) 87

To obtain the limit condition ca ¢;, we must coatinue the expansion.
6:(,-';) + u’u(,—") +0(%) = +_§,'§mo + sh(g»

"Raesolution of the order ¢
The general solution of the Laplace squation can be written:

. A i Bl ,
P d= T Y (e + G e, (66)
JeO ma=j
-
Bi=Y Y RijmYym (67)
1m0 ms -
Y,m are the spherical harmonics:
PP (cos #) cos my; form20 .
j 68
Yim = { Pj"'(eoc 0) sin [mly; form < 0 (68)
The limit condition at infinity on ¢; leads us to take:
’ - (vY)

Apm = ‘;.0 ';n

Since the problem is symmetrical about the (Ozz) plane, thete are wu
terms in sin ¥.and we do pot have to consider m < 0. Using the fiut
that

T e
2(2)
?/lo is of cxder o(1) so equatiag terms at leading order give us:
(%8)

E_‘l'%
Order ¢ l
Inner problem at ovder ¢ '

Siace & asd do oaly depend oa time, at order ¢ the equations of the’
problem become: :

Ad; =0 (.o)i

bz b -% (61)

‘%“J + ‘l%?)'- - % -G'L (n)
. . . s ”i

LR R g %’,—1’“ + l:-—',?;‘,—‘-’ + RG]+

()R P(0,9))pup, = IXPR R (®)

where

C. = 29, m'l'm0.m¢+.|(m’0m’¢-m")(“)
F = a,sinldcnev ¢+ ayesel (63)

mldnlws&z%)’:;. ()
ind 2 Y 71
sin? 0 cos? ¢ - cos Oa-Ym+—‘—=Yl. an
Equation (18) becomes:
i+ 1 . 2.
-!i‘?;-, BijnYim + %n,,.y,. = kY - 3 RoarYut
' Yn 72
| +¢11¢(Yn - -6_) (72)
! - 4 - ,
i By; +1
% + T;"E'Y"" - i—slh‘-y:'- + G’E,—.Bu-y:-‘
' 2 Y
' -2{;3"'-1'5- - m!ﬁ:Yn - icx(-"’n + ‘?’!H
shove(aYy; + 03Y10) = RinYoad X PRGN ! (73)

: For § > 2 we bave » bomogeneous linear differential systews where the
initial conditions are zero. The solutioa is therefore B))m = Biym =
0, vj>2
Rasolution form = j = 0
We have to solve the following differestial system:

-—E"W'k—tim

B 27§
%+f*é3m°(ﬂé+«é)‘m=

(74)

= Rio{IKPRG ) 4 ylv(axi;’“-' - é ] (75)

& ,00 is the solution of the linear differestial squation:
F 3 3 H PR B B
‘oﬁm + 3&3,@ + ‘ojlm = -RR, - im-
(7u)

~Ri{3KPR;I -V ¢ %ux&;“ e R'la'u

ané Byx is computed using:
B = "“6)‘[“ + 2‘0-&0‘-’“‘




* Resolution for j = 1
We bave the same differential system to solve for Rpio and Ry). The
only difference is a; instead of a3.

Resolution for m = 0 We have to solve the following differeatial
system:

l

Bno Rpno _ 3
-2 —_— o R 78
) +2 T no (78)
B q L
AL 2E Bpo - (% + émno - pRovza; = 0 (1)
R0 is the solution of the linear differential equation:
ﬁokno + 3kokno = 2uRo0, v, (80)
Rpo = il'é /o ‘2uR3u,00de @®1)
and Byyo is computed using:
Bno= -%ngno - 2%&&“0 (82)
Resolution for m = 1 i[u and '[" are compuud lllil‘:
Ry = 1‘%/‘: 2uRdv.ardt (83)
B = -;Eim - mmhx (84)
Resolution for j = 2 — R

We have the same differential system to solve for R and Ry. The

only difference is that we bave {a; instead of a; . ,

m\?ﬁon form =] w.hanto-nlvnhc(ono'iudi&mﬁdl

Rioo |

"% +3CF ~ ki - ;‘om (85)

b ,
g+ 35 B - (3;5 + gk~ Fea=o (86)'

R13) is the solution of tbe linear differential equation:

Rk + 3Rokp, - Rokpy, = 139 Rooas + ;‘301 (87),
and By is computed using: '
By = '!3‘2 &m - ;Rskoﬁm + ;ﬂaz (88)

I.uol\.!t ion of the coeflicient in front of Y; R, is the solution
of the linear differential equation:

RoRyy+ 3)2,)}” - ioku = 5&‘0"1 + R}a, (89)
and By, is computed using:
4 - - .
3“ = —%R“—gkgkgkuihgaax (wl
The potential and radius at order ¢ are:

- B 1
¢ = g + ——;2 + a(a“om‘ + By eind cos ¥ )+

-'!,-(3813, sinl cosl cos ¥ +Bu(¢iu’la:l’¢-m’ )91,

By= Rigo+ Brnocos® + Rppyaint cos +
3R;3 800 cos ¥ cos ¥ + R;y(sin? 0 co? ¥ ~ cos’0) (92)

Outer problem at order ¢

At this order the outer problem sees a singularity at the origin due to
the presence and bebavior of the bubble, and also the curvature of the
body (see Figure 2). The solution can again be obtained by placing
an identical ungularity symmetrically about the wall aud by adding
distribution of sources on the body. The singularity distribution will
induce a change, L, in the velocity potential at the origiu. The outer
problem’s solution at order ¢ is then:

$=Cl+ )+ L(P) with LO)=1L (93)

Orde:r <
To continue the asymptotic expansions, we need to evaluate the bi-
gradient of the velocity field.

. Matching condition at order ¢

Using the solution of the outer problem at order ¢, (94), where the
|cnutut C has been evaluated

= ¢, B

- "=_§+T' )
we obtain::
roor ’ ir o7 4

Broot pul(2)+0(e =) = C1+3 -0+ opeosd +L7(95)
“which leads to C = Bjoo.

e =B L1 x
| Ou('c)+0(¢) 7 +1+4“W'+0(%) (96)
]
i -’12(‘,,(;)-1;".2 -L-%icul)so (97)
!

‘Resolution of the inner problem at ‘order ¢?

For the following order we need to calculate the terms of order ¢? for
the following expressions:

(;-::),.‘ : 933'4—' + i:-’% + ﬁu%‘,ﬁ + ;3'7:",—.&' (98)
CEamnmr T 0
{(Ve-Vo) &}, 00 - -%ﬁ;ﬂ'-c.ﬂ1+ao%+“.i"“—%(l()1)
{Sx oM &),_, :.;(m'»%--"l"i‘iﬂ-’) (1u2)

ond &

% _den; 8, . de 1., & _
(0‘-);.‘- e +jlﬁ?l”“h?531h—.—b’: {103)
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1 [de  Oey, [Be; ; &, . ¥e
¥ (3) bt (T"”F Mtk
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A05E) + 18y s R -5k w0

=\ 3 = 23
s () 1en 2 (%) -

3 = 43
1 % 1 dd
(s (B9) Yot * 3Ep (%) o)
{(VO - vl) * vs)l-ﬂ : %lzav%? + cr
241 (101)

(&l:‘—?; "'20%".-’) - G.%’- - 'N
% (V3 - V3(0.t)) : wve(t)Ri(aycosd + ay sind cos )+

G143 911+ S v () R3(mcor™ 4+ in# cos ¥ cos $)(108)

84, siny cosd 34, '
! -————n) (109)

{Sx OM-Vé},.p: S cosp g =g

The system becomes:

B¢ =0 (110)
Jim ($u(7) - 22 — L - Srcot) = 0 )
{2:-,#' + t;%’% + J!u%%° + %ﬂ% - Ili% a:, :
a.% + -.%‘-%%!- ,'
~o(ep gt - frd et by, (a12)

81 &4, 5o 1., 8% , 8 81
Tﬂ-!luﬁﬂ"um'{-ifim*{' % o +

2i 0%%; 5 0y By 1400 0%
rhig oty 5 b 5t
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M S L SR g 7 ("u"

106\ 14, 0k % 3 %) _
2 .in'o(ow) +§R°E'Tr‘-+a'("ﬁ+‘°ﬁ !

8¢ 8 .
~Giggl = Cogat + wve(t)hi(@rcort + ay ind cos 9)+
+R Gl +Gi+ G+ ;pv.(t)&’,mm’u

8¢, sin¢ cosd 8¢,
" wmnd Oy )}".‘

= JKP (K]kiwk‘;’kl-’ + ‘G’K-‘iuw)

The Lmut condition at infinity leads us to take o =

nanbcoslcosy )+ w(ecosy

(113)

(114)

- B . -
b= —;°—°+L+ %rml +z%€‘,—¥m
P

R; and ¢, are functions of spherical harmonics up to the order Ys3,.
The cgtoducu of these functions give us barmonics up 10 the order 4,
which leads to 15 iudependent linear differential equations to solve.

Application to Bubble Dynamics near a Head-
form

In this section, we put into application the asymptotic expansion by
studying the collapse of a bubble near a semi-infinite blufl body. The
velocity potential considered is that due to a superposition of a uni-
form 8ow and a source of intensity Q:

¢°=v_,x+g (115)

It simulates the flow around the Rankine ogive of radius R at infinity:

_/Q
R—m

The stagnation point occurs for X = -R/2.

At order ¢ the outside pressure Ap(t) is taken to be the pressure
'in the fluid in absence of the bubble along the trajectory of a fluid
.particle. At higher orders of ¢, the gradient and bigradient are also
taken into account while following a fluid particle. Figure 3 shows the
streamlines around the headform.

A fourth order Runge-Kutta procedure is used 10 solve the differ-
ential equations presented earlier. To illustrate the method, a Rankine
body with a radius of 10 centimeters advancing at a constant velucity
of 1 m/s was selected . Figures 4 through 7 show some results obtained
on bubble behavior near the Rankine body. Figures 4a through 4d
show a case where the interaction between the bubble and the ogive's
flow field is significant. The initial bubble radius is #o = 1 cm. aad
its distance, b, from the wall is such that ¢ = ro/lo is equal 10 0.3.

l Figure 4b shows the trajectory of the bubble center along the budy,

and figure 4c shows the variations of the pressure in time imposed on
the bubble. In the initial pbase ¢ < 1.7 the bubble sees a pressure drup
and as a results jt grows, later on, the pressure rises back towards
the ambient pressure and the bubble collapse. Figure 4d. shows
the velocity of the fluid along the bubble trajectory. This velucity is
also that chosen for translating the origin of courdinates in which the
bubble shape is prescribed. Figure 4a shows, overlaid on each other,
the bubble contours at different times during the bubble gruwth and
collapse. Theorientation of the bubble relative 1o the body is the same
as illustrated in Figure 4b which shows bubble positions versus time.
It is apparent from the contour plots that the bubble moves 1oward
the body wall during its collapse. Due to the velocity and pressure
gradient around the body the bubbic elongates and in fact rotates
around its center of mass. Initially, the side of the buhble surface
facing an intermediary direction between the dowustream direction
and the wall direction flattens out. A reentrant jet is then produced
perpendicular to that face. The direction of the jet appears to change
with time ip a fashion indicating increased infiuence of the presence
of the wall with time. The computations shown in the ﬁ‘ﬁnrr atopped
when the bubble wall touched the origin of coordinates. This moment
can be delayed in future computations by adding a compunent to the
tr:unslation of the origin of coordinates that is perpendicular 10 the
wall.

Figure 5 shows the influence of the distanre of the buhbic 1o the
wall. or ¢, on its shape history. In all three cases shown ¢ = 01,03
and 0.7 only bubble collapse contours are shown. As expeiicd. desia
tior. from sphericity is enhanced with the proaimity te the wali Due
to stronger shearing action closer to the body approaching the wall
bai the effect of increasing bubble stretching ard elungatin Juring
ite growth. ther. reinforcing the reentrant jei formatun. dutug the
collapse. For ¢ = 0.3 and ¢ = 0.7 the compuiation stupped when the
bubbie surface touzhed the orig:t. of coorditate:  Howeier due the
weal nature of the interaction fo: € = 0.3 the collaps 1= cun.jheted
witl. no reertran: jet and is followed by a bubbie rebuund ur s vin!
growth that is not shown o the f:gure

Ao, & expecied. a sindias effect ax o figere Sas ol d il the
distence 10 the body is mantaned constent winn the bubbi siee
chaz.ged Figure 6 show: such a case. whese the @raiarie b twess the
bubbie center and the wall 1s mainianed at 10,3 en.. whie tie Lubbic
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« size is changed from 0.5 cm (¢ = 0.15), to 1 cm (¢ = 0.3), to 2em

(¢ = 0.6). Here too the jet is seen to rotate to become closer and
closer to a perpendicular to the wall. :

Conclusions and suggested improvements

We bave presented in this paper an analytical approach based oa a
matched asymptotic method to study the bebavior of a bubble in a
ponuniform potential flow field. The analysis was conducted up toor-
der ¢2 where ¢ is the ratio initial bubble size to initial bubble distance
to the nearby wall geperating the nonuniform flow field. Numerical
results calculated up to the order ¢ show the formation of a jet movin,
opposite to the bubble trajectory and towards the wall on a curv
trajectory which approaches a perpendicular to the wall with time.
A lengthening effect on the bubble period is observed as well as an
imparted rotation of the bubble. . .

Improvements on the numerical approach should include using a
motion of the frame of reference which incorporates,in addition to the
motion parallel 1o the fluid particle trajectory, a component perpen-
dicular to this trajectory so as to account for the bubble motion to-
wards the wall and retard as much as possible crossing of the origia of
coordinates by the bubble surface. This will enable the description of
the bubble dynamics for a longer period of time in the latest phases
of the collapse. The results of this approximate analytical method
should also be compared with those obtained with the available three
dimensional boundary element method SDynaFS$.
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Analytical study of a gas bubble in the
flow field of a line vortex.

RAMANI DURAISWAMI AND GEORGES L. CHAHINE!
DYNAFLOW, Inc.
7210 Pindell School Road
Fulton, MD 20739

abstract

The flow surrounding a bubble in the flow Seld of & line
vortex is investigated by means of an asymptotic analysis.
The flow is potential, and the leagth scale eristic of
the bubble is assumed to be much smaller than the distance
&om”;::nb\guewthevonu.ﬁemdyd&h Ptehmnr‘;
s inate system moving with the bubble. imi
results show that the bul?:l! moves with the flow, at a rate
faster than the regular flow, and that a jet on the side away
gro{:a r:segnection of motion, directed towards the vortex axis
is .

1 Introduction
The problem of the interaction between bubbles and vortical

flows is of relevance to several fluid engineering problems. :

Important examples include cavitation in shear layers, tip
vortex cavitation, bubbles in regions of flow separation, and
bubbles in boundary layers. In these flows it has been
tulated that the bubbles cause several dramatic effects m
Boise generation, material erosion, drag reduction) (Young
1989, d 1991, Hammit 1980, Blake and Gibson 1987).
However, the mechanisms by which the bubbles play a
bave not been fully understood. While a number of studies ia
the past have elucidated important mechanisms in acoustic
. cavitation, in the field of flow/vortex cavitation not much
progress bas been made. In this paper we hope to obtain
some understanding of the interaction of bubbles and vortex
structures by studying a relatively simple problem — the
interaction between a ine line vortex and a gas bubble.
‘When a bubble approaches a region of hif‘ vorticity in s
fluid, it is accelerated towards the center of the vortex struc-
ture because of the pressure gradient it sees. The bubble
undergoes a corresponding increase in volume and may split
because of the dynamics of its motioz. Explosive growth
may occur if the bubble pressure drops below its critical
Kessu:e. This phenomenor was recently numerically simu-
ted by Chahiae (1990) usizg a boundary element metbod.
This study is intended to complement that work.
We present preliminary results from an apalytical study

'Ais. Resear:l. Proimso: Department of Mr:hankal Engineering.
The Jotin Hophins Ctiversity Baiiimore, MDZ1218

of this problem. The study assumes that the bubble is out-
side the viscous core of the vortex. Consequently the flow
may be assumed potential - an sassumption standard in cav-
itation bubble dynamjcs. The assumption that the ratio of
the bubble radius to its distance from the line vortex is a
small quantity (¢) then allows us to treat the problem using
an asymptotic technique. The results are accurate to O(e?).

The novel feature of our analysis is that it represents one
of the first analytical studies of the motion of a deforming
bubble in & flow field where the velocity is not negligible.
Indeed in our scaling the velocity of the fiow and the bub-
ble collapse velocity are of the same order. The crucial part
of the analysis is in performing the analysis in & coordinate
system which approximates the bubble motion. This is in
contrast to earber studies which relied on an approximate
model, e.g. Bovis (1980), where the Rayleigh Plesset equa-
tion was combined with a model of a spherical bubble in
the flow field of a vortex. Preliminary results are presented,
which qualitatively agree with observations and the simula-
tions of Chahine (1990).

2 Problem formulation

Consider an initially spherical bubble in an incompressible,
inviscid liquid of density p;in an infinite domain at a distance
d from s Line vortex of strength I'. The bubble is initially
at rest with a radius R, and hulu at pressure p. The
pressure at infinity is p,. and the fluid is at rest there. The
velocity due to the vortex alone {i.e. excluding any bubble
effects) is denoted V.

Figure 1 indicates the situation considered. The size of

the bubble is assumed small compared to the distance d. To
rform the calculations we shall consider two coordinate
ames. The first is the fized frame which is corvenient for de-

scribing the overall flow, and through the origin of whick the

voriex passes, while the second is the moving fram¢ which

bas its origiz initially at the center of the bubble and nwres

at the rate the liquid would in the sbsence of the bulble.
'e denote the location of the moving origin by b.

We choose a cylindrical coordinate system, (¢,3.2), with
the vortex axis along the = axis. and the origin in a:- orthug:
oca plane costaining the imtia! bubble center. Su.ce the
n;.o'.ioa is irrotational we may define & poteatia (x.1) so
tha:
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u= V¢, (1)
The equations of motion are

V.-u=Vi¢ao, (2)
and

3 oy .vgnPu=P

m+2v¢ V‘:—’—-. )
These equations are subject to the conditions that

h}lig\“ P Pw hllim uz=Vé=0 L))

The equation of the surface of the bubble may be assumed to be
represented in the form 8(x,t) = 0. Determining this function is an
objective of this study.

The bubble is assumed to undergo deformations accordiag to a
polytropic law. Thus

pV* = constant, (%)

where V is the volume of the bubble, and & the polytropic exponent.
The mass of the gas in the bubble is assumed to remain constant
and equal to m. The kinematic boundary condition requires that the
bubble surface be a material surface

DB :

Y i 0. {6)
The balance of the normal stresses at the interface yields

Plg=p,+ P - oC, YY)

where p, represents the pressure of the gas inside the bubble, p, the
r pressure, ¢ the surface tension coefficient and € the curvature
of the surface B. The normal to the surface B is givea by

n=|:—:l. @)

The curvature may then be computed from the formula

vB 1 1
C=V 3=V e & =2 e « .
n iz = IVUIv B+v'val vs (9)

Since we are interested in the modification in the flow caused by
the presence of the bubble it is convenient to introduce the reduced
potential ¥, defined by

r
$=4-B=d-4, (10)

where-ﬁ is the angular cylindrical coordinate in the fixed frame. The
qQuantity ¥ represents the change to the potestial of the flow because
of the presence of the bubble. Because of linearity, the function ¥ also
satisfies hglace's equation. The boundary conditions it is subject to

on the bubble surface are
n- V|, = [Be, - Vis] =, (1)
which is a restatement of the kinematic boundary condition, and
%—‘f + %Wﬂ%v Uy + %V’] =po—Pp - toC, (12)

which is a restatement of the dynamic boundary condition. Here we
bave used the sgmbol V to indicate the quantity V¢,. Additionally,
far from the bubble, the potential is expecied to reduce to that of the
vortex, and so we require

Jim =0 . (13)

We now consider a moving system of coordinates. The coordinates
are initially coincident with the bubble cester. and move at the rate
the flow at that location would have in the absence of the bubble. In
the moving frame we let the Cartesian axes remain parallel 10 those
in the fixed frame. Let x denote a vector referred to the fixed frame
and X’ the same vector referred to the moving frame. Then

z=x"+b(t, (14;

with the pew wotdinn; changing with time. We may thus write a
given function ¥(x,¢) as
¥(x,t) = $(x’ + b,t) = ¥(x',0) (15)

where the functions ¢ and ¥ bave the same values at a given physical
location, but bave different functional form (and are heuce indicated
with diﬂ’ennwmbol:). To clarify the behavior of this representution

of the potential we note
&y o¥ )
u-vab?.c,za—::q, (16)

and

ov_ov ovss v _ovob

8 Ot Bz, 00 b8t B2, O

Thus in what follows all conservation equations are written in an iner-

tial system of coordinates, but the scalar representation of the problein

in terms of the potential) may be expressed in terms of courdinates

elong,iunlg to a moving system. In particular this inplics that iner-

tia) accelerations (mﬁ as centrifugal or Coriolis furces etc.) will not

have to be considered. The potential ¥ may be called a “mixed”™ po-

tential, and we must be careful to reverse the transformations while

inter| reti:f results.

he velocity V is expressed in the moving frame as

(17)

r
V= -2-’-’7.,0 X &, {18)
where ¢ is a unit vector along the shortest line joining the point at
which the velocity is to be measured and the z axis of the fixed system,
and ! the length of this line. This quantity is evaluated explicitly in
the appendix. At the origin of the moving system it is

r .
Vo= m[—mwt oy + coswt vy,

" where we denote the Velocity of the basic flow at the origiu of the muv-
ing coordinate stystem by V. The advantage of defining the moving
system is, of course, that the equation of the bubble surface may Le
reprasented ip a single-valued closed form more convenieutly. Ideally

- such a system should be centered at the bubble centroid. However for

.this asymptotic study it is sufficient to let the origin of the moving

;system be initially at the bubble center, and let it move with Lhe ve-
locity a liquid particle at that location would have had in the shsence
of the bubble. This restriction could perhaps be lifted at the expeuse
of more complicated analysis. Let F(x’,t) represent the equatiuon of

_the bubble in the moving system. In the fixed system the equation of

“the bubble may then be written as F(x - b,?). Thus the condition

-that the bubble surface is a material surface requires

DF

Dt
. which may be written as

OF B8Fbb, _,. .. OF _,

-§+o—"-3‘-+v ¢V'F = 37+ (V¥ +V~Vo)|oVF=0(19)
'In the moving frame we introduce a spherical coordinate system (7,8, ),
centered at the point b. The equation of the bubble free surface may
then be written as

r =R, p.t). (20)
The governing equations may then be written as

v =0, subject to

v" '.:ll* = (%) & + (vir-' - va) B r.’l,

o 1 ., 1

3 :’+(v-vc,mvw.-zv«*]"1= -

i
=2 1-&(&) A
”n Pa \V Pa P

lin. ¥=0
P2




3 Dimensional Analysis

]
The flow is assumed 10 be divided into two , &b external region |
where the effects of the vortex dominate, wm.c jon close to the
bubble is dominated by its dynamics. The length characteristic
of the bubble region is Ry, the initial bubble zadius. The time scale is
taken as Ty (10 be determined), and the scale of the pressure is taken
to be the initial value of the im pressure fidd at iafinity. The
idea is to exploit the fact that the bubble size is much smaller than
the hltp;th scale associated with the vortex fow, by using perturbation
techniques.

The physical quastities entering the problem are pyo and R (from
the bubble), and po, T, and p; from the liquid. The distance between
the bubble and the vortex, d is taken to be the length scale of the
“outer” problem, while the initial bubble radius is characteristic of
the “inner” one. We define

=gy, (22)
and will use it as the small parameter in the asymptotic treatment.

3.1 The inner problem
We non-dimensionalize the inner problem first, using

x'=Rox' t=Tol p=pof ¥=bhV. (23)
In what follows, primes denoting relative variables will be dropped

when we are concerned with the inner problem. Upon substitution ia
the equations of motion we have

V¥ = 0. (24)

The problem scaling is determined by the boundary conditions. The
kinematic boundary condition leads to

%n-@ﬁ =(V-Vo)-u+ %i&'l
We are interested bere in situations where the initial bubble sucleus
_grows quite rapidly. Consequently the proper scaling is

w=2

=0 i

To l

r‘y“h :Iiaﬂ retum to u:'h; scaling of tl;e velocity diﬂ’en:‘ce t‘e)m on the

and uide etermining the proper time scale. using

;h; dabove scaling for the pount?ﬂ u.f dynamic boundary mdiuon
ields

.17 . 2
=t -;Wi'l’ + % (V-Vo)-V¥+ (% %V’Lt =
pTi (P (Vo\'_ 2o, _* 4 ) :
nR} (l n(V) ril (@)
Balancing terms, |
TO =Ro —’Lo (”)!

Poc

which is the Rayleigh scaling for the time. The principle of least
degeneracy leads to the condition that the scaling for the velocity V
be such that it is of the same order as the bubble deformation velocity

r R
v Ay cmem Sy —
Vi~ R 2
We denote
T/2xd
Q= . 28
P/ Pi ( )

The nondimensional velocity is aber defined by

o Ry
V= i
av T, (29,
Returning 1o the kinematic boundary eondition. since the velocity is
assumed 10 be regula:. and the bubble size smal iv comparisol to
its scaie of variatiot.. the veiocity difference term. is seen to be O(s).
Formally this imposes the foliowing restricuot the gradiest of the
vortex velucity fielc

(Via - Vo) ~ RalvV| ~ e 52. 30)
Depoting
V-Vo= .?m‘u, (31)
]

where we bave used the symbol V, to denote the nondiniensional
velocity difference term, and

[ 4
w=,¢xo

(where W is a Weber number), the complete inner problens may be
written as

P, s:—f p.,:f. (32)

V=0 (33)
N 1.. . . )
[3{ + ivi . +e1Vy O+ EQ’V’]'.* = (34)
&
= (1-1’, (—‘é’) -‘P.+Wé)
[n-@i]h‘ =a- (%c. +cV‘) (35)

An important quantity is the rotation frequency of a particle around
the vortex line. This is givea by frequency

2 r
@n)/(T/2xd) = =&

In the current scaling the ratio of this frequency and the Rayleigh
frequency is seen to be

R°7r/2-7'g- ~ O(e). . (37)

w= (36)

wlo=—
o 4 Vre/o

3.2 The outer problem

Since the outer problem for ¥ has 8o boundary conditions except reg-
ularity at infinity and matching with the inner solution, the solution
can be obtained sasily by replacing the inner variable with the outer
one, and retaining terms of appropriate order. Thus it need nut be
considered separately. To enforce regularity we just add the condition

lim ¥ =0, (3¥)

"to the inner problem. With this in view, and for euse of expression,
}:ﬁ tildes indicating non-dimensional variables arc dropped in what
ows.

|4 Asymptotic expansions

The above equations are solved up to and including terms of O{c)
though some of the work for the O(¢?) problein has been done, and
these results are also given where available. We write the poteutial
and the expression for the bubble surface as

¥ = VotV +39; +0(c%) (39;
Pz e(t)+eRy(0,p,0) + R0, 0,0) + ofe?). (4u)

It bas been assumed here that the leading ordes teri in the expansin
fo: the bubble radius is independent of the angular variablea. > will
be justified o posterion. Additionally we suppusc that the funcuions
R, and R; are regular so that we may expand then as

« |
Rubpt)=ro+) 3 ruallw)¥™dp), i=12 (1)

inl ma={

witk Y™ (6, 9) the surface spherica! barmonics (see the apjpendia fo.
detgs !




Order ¢°
Ulz: introducing the expansions, the leadiag order problem at this
order is

Ve, = 0, ()
subject to

¥,

—5;_ - = -4, (‘3)
and

}Lﬂ; 'o =0. (“)

The spherical symmetry of the problem is obvious, and this justifies
our previous expansion for the bubble shape functioa.
his problem has solution

Vo = !3 (45)
Application of the kinematic boundary condition yields
o= -a’é, (46)

where the dot indicates a time derivative. Substituting the above
solution in the dynamic boundary condition

9%y 1 /78%\* = w
5t +2(—b"—) +n .l-”. —?v+ ‘l (‘1)
yields the following equation for @
3 oo W 2
o+ 34 =P -—.—+(r.+n -1). (48)
This may be ized as a variation on the conventional hzl igh-
Plesset equation (Plesset and Prosperetti, 1977) for spherical bub!
_dynamics. ) .
Order ¢! . ,
The equations at O(¢) are
Ve, =0 (“9)
subject to i
8y, & R, ~ '
or cn'lm:-it-‘bnv"." (50)!
and .
ov, .oV a? . !
—GT‘+¢-3—'1+R; (2%+¢)+¢0V4--.+Vo-V.L X
no WS ¢ ,,,_( _(:—1)(:+22) o)
= u?.m . §-§‘ . 1 2 (51)
Introducing the expansion for the functios R, setting
AL
n=Y 3 28V, (82)
=0 ma-i

and taking scalar products with a generic spherical harmonic, the
kinematic boundary condition may be written as

bllm

TR L W YT L - B

Here A and A® are complex coastants (functions of time), given in the
appeudix, and 677" is the Kronecker delta in two indices, with value
unity if m = n and i = j, and is zero otherwise. From this equation
we ge:

.003 . - ogm.=
£ (m # 2Erum + A 4 47) - 50

Substituting in the dynamic boundary condition we get

him = -

——

17 {2 (B (2) rum Brom) w2 (e

+A"‘;'°’)} + l-;‘_l ("u- + 2-:';& + A8z + ‘.‘;'-’)) (58)

& rioolg’ . 2W Pym
) (’7 * ‘) um = 3P, R+ e U

g-ixt+l) ’)2(' * ”) +O(AR + A0~ + Q3 (aky + a"ip™"),

where the coefficients A, A%, a,a” are given in the appendix. llere °
indicates complex conjugation.

Examination of the above equation reveals that, except for (I, m) =
(2,2), (2,-2), (1,1), and (1, -1) the equations are houogeueous sec-
ond order linear differential equations (initial value problems). Since
we have assumed the bubble starts from a spherical shape, sud is ini-
tially at rest, the solutions to these equations will vanish identically.
For the four non-trivial cases, the differential equation satisfied by the
particular radial component may be written as follows

Wriy

eFin + 3a¥yy; - 423';11 =4 + 2% (50)
Y al
.q '

&)1, + 3afyy o ~ 42.-'..,., = 4y-'-"‘;-—" + 20%° (87)
a. .. @ 1. Wria, 2,. 1, .
3'12:+¢'m- (27 + 50) na = - +0 (SM - ida)(&)

- .. a? 1. Wria, -
gﬂz,-z +af13,.3 - (2:" + 5.) 23 = —.—.L:—!
2 |
-Ata = - A® . 59
+0 (3A é-34 c) (59)

The coefficients 4, 4°, @, a® are complex aumbers, aud it would be

- convenient instead to seek solutions of real combinations of them. An

for ry;; and ry; _ indicate that
-Conseq

examination of the differential equations satisfied by Py and vy _.
reveals that they are complex conjugates. Similarly the equatious
ey too are complex conjugates.
uently if we define instead the pew varia

Rusrnut+rma K= Inne (60)
Rin=nntra.: Rua= "—”...—'"-"—’- (61)

"we obtain four equations in real quantities. These are givex by

N ad
Cinl + 3R - 4-:—3") = ‘—.w:;" - zﬁﬂ’uo.ut (62)

. @ .
cﬂ...-.+3¢i}t,,,-,—4%2,,_-, = 4WR.;|'-' +2\/-m'lhwwl(ﬁ;’)

_ s al 1. WR
glm +éRiz - (2.: + 30) Ry =~ .am+
ad 2wa?

- —_ g - — (2]
2J§9 ( 3 sin 2wt 3 ax2ul) ()
[ 3™ . & a? 1. “-Ri.' -
sﬂxz.-z +aRyy .5 - (2% + 3‘) Ri-2=-—5 2

T

e 2wa? .
2J§Q (-i co.2wt+—3—nn¢.u)

Ip terms of these pew coefficients the surfuce of the bubble (in the
moving coordinate system) is given by

r=a+c|(Rycosy - By gmr el (W,

\l
4 (Rizacos 2 — Ryp-asin 2psin’ 8 + Oye?).
i
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ry Results and Conclusions

We present here some results from a sumerical study using the above
equations. The equations involve 4 parameters - P,, P, 1, W and the
perturbation parameter ¢. In the following we have not attempted to
map the parameter space of the above equations, but rather demoa-
strate the characteristics of their solutions for 8 particulaz choice of

the }nnmeten and show that they make physical sense. We choose
the following for the physical parameters:
P, =103x10Pa, Ry=10"m, d=5x10""m

F=12m%s, P, =2x10°Pa, @=Tx10"'N/m,

p=100 k=14
This yields the following for the non-dimensional parameters

P, =29126x 107 P, =198417x10"7 W =6.7961x10"*

P =3x10'Pa

To=985x10"% ¢=753x10"%

) The equation systems at O(1) and O(c) are integrated using a
simple fourth-order accurate Runge-Kutta scheme (Press et al, 1989).
The equations at O(z) are linear, and consequently do not pose a
difficult numerical task to integrate.

The results from this trial run are shown in Figures 2-7. The
results indicated that the expression for the bubble becomes multival-
ued for times after 4.6Tp, i.e. the origin of the local coordinates lies
outside the bubble after this time. Tgu results of the integration to
this time are shown. Figures 2-4 show the behavior of the radius coef-
ficients a,R) 3, R .1,R22 and R; 3 as functions of time. The growth
of the nonspherical modes with time indicates the asymmetric nature
of the bubble behavior.

Figure 5 shows a cross-sectional view of the bubble in the =,y
plane. The bubble motion and deformation, and the formation of the
jet are clearly seen. The bubble initially collapses almost spherically
(while moving with the vortex flow), and reaches a minimum at &
proximately 1.55T5, and grows till it reaches a maximum size at 2.97¢.

1t subsequently collapses and shows the formation of a jet on the side
opposite to its direction of motion, and directed towards the vortex
axi>. The computations are stopped at 4.6To when the bubble no
longer contains the origin of coordinates. Figure 6 shows the motion
of the ¢ = 0 and ¢ = ¥ points in this cross-section. Finally Figure 7
shows cross-sectional views of the bubble at the same times, but in &
normal plane. This plane contains the s axis and the line connecting
the moving coordinate origin and the vortex. The fact that the jet is
directed towards the vortex axis becomes apparent in this view.

. Quite obviously a more systematic study of the parameter space
is required. Also, as in Chahine and Duraiswami (1992) the results
of the asymptotic analysis and of the 3D boundary element program
3DynaFS must be compared. Qualitatively the same type of results
are observed. The expression used for the motion of the moving co-
ordinate system must be refined to prevent bubble function becoming
multi-valued so early in the collapse. These and related aspects are
items of current research.

= 3.764 x 107!
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Appendix

The presence of the non uniform flow field makes the analysis a litile
involved. Here we present a summary of the relations used to perform
the analysis. McRobert (1967) and Greengard (1988) were useful for
material regarding the spherical barmonics.

:Spherical Harmonics
" Laplace’s equation in spherical coordinates (r,0, ¢) may be written as

e (420) ¢y (e (3)

' + 1 & =0

: ATy

- The finite solutions of Laplace equations in an unbounded region way
be represented as

» - - -Y- ‘.
$=a+3 2 anXe),

(67)

(68)

where the coefficients A™ are constant,and Y™ (0, p) are the spherical
barmonics. These are defined by

-——g: e ::3: Piri(cou 8) exp(imep).

"We pote that Y™(#, ) and Y,"™(#, ») are complex conjugates.
The part of the Laplacian operator with differentiation over the
angular variables is denoted Vi, i.e

Y™ (bv) = (69)

b srarans (504 () + i
VS5 sind %))t TaTiog (70)
Because of the form of Laplace’s equation, the spherical barwonics
satisfy the following idestity

Vir"(h,9) = =(n+1){n+2). )

Acy regular function cayn be expanded on the surface of the unit spl re
ip terms of the spherica barmonics. Ju particular the expressions for
the voriex velocity field involve expressions iu the cartesiai coords
Bales 2,y




Expression for the normal

The Taylor series for the expression for the sormal to the surface B
givea by

v ~ot) - R (0, 9) - Ry (0,9) = 0 (1)

about the surface r = g is
10R, L 1 0Ry 1o

n=e +¢ ."u+“i"~~ +0(s?) 1)
Expression for the Curvature
Consider the equation of the surface gives by

B:  r=a+eRy(0,0)+Ry(0,0)+0(s?) (74)
The expression for the curvature of the surface is

n=v.] 28] .1 (l) .VB;
C=V.a=V ] = AV B+ V y vB;
where A= (V8| (75)

We estimate the terms in the above equation upto o{¢?). The gradient
of the surface is

V5= [1. -é% (eRy +¢7R;) .-:‘:—,é (i + 1’733)](76):

The quantity A = |[V5] may be estimated as

2 12
A= [1+:—: (n§.+£:—‘{;)] +o(e) =

14 -,2% (‘k}, + n—?{;)] + ofe?). (™)
Thus ‘
2
G=1- 5 (Rl ) 4o ()
Consequently,
1 2 |1 R}
o@)-p )]

The second term on the right hand side of oq. (75), denoted Cj;, may
be estimated as

1 2 R
Cu=v (1) VB = .:-, (n}, + ;;’3) (80)
The first term in oq. (75), denoted C;, may be writtea as
1
=5 (3 - SViR, - —vsna) . (o)

where V1 denotes the part of the spherical Laplacian operator con-
taining derivatives with respect to the angular variables, and is defined
in Eq. (70). Combining the expressions for C; and C;j, we get

2
€C=C+C = [l - %V}R, - %V}Rg] (82)

The above expression is to be expanded in Taylor series about r = a.
The final formula for the curvature thes is

=2 l1o: R .’EA]

C-.{l ¢[2V5‘+.
10:R; Ry Ry (R

+0[-3oid 2w e ()}

The terms involving the spherical surface Laplacian may be simplified
by use of the idenuzy (71).

(83)

Bubble volume
The radius is expanded as

r =6+ eRy(0,0) + *Ro(hp) + «s’)
The volume of the bubble may be written as

V= L" lv[ -inm[""“'" tidr = o {‘?'Av

Ao osimoe e fosef§02)

If the functions R,,§ = 1,2 are expanded in terms of spherical has-
monics as

(84)

w |
Rizsrao+) Y runY™(00) (86)

in} ma-l

then, using the orthogonality of the harmonics, we may write
4ar ? r = o i \?
Vad | rmd® polm, 23 3 (Nr2x) fen)
3 e e ot e
where

- , 4r

(83)

. Asymptotic development of the basic flow velocity

The equations (33) involve several expressions for the vortex induced
vdooe?y cxpnu(ed )in the moving system of coordinates. These expres-
sions are developed in a:i'mptotic series bere.

_ In the fixed system of coordinates

V= L.,. (8y)

2xp
To express this in the moving system at a point P, we denote the
intersection of the 2y plane through P with the z axis as O. Then

Vet e x-or=-——r ey X 8OP.

2x|OP] " 2={0P|?
Performing the indicated cross-product
V= I =(#sinlfcosy + sinut)e, + (Feinlsing + coowi e,

1+ 27sin f cos(wt — 9) + Flsin’ #

2xd

We introduce the non-dimensionalization of §3.1, but drop the tilde
notation for the non-dimensional variables.

V= —(ersinfcosp + sinwt)e, + (ersindsiny + coswt)e,
N 1+ 2¢r sin # cos(wt — p) + €373 sin® §
Expanding the denominator binomially
V = [-(sinwt + ersinfsin p)e, + (coswt + e sindcos p)e, }(90)

[1 ~ rsindcos(wt ~ @) + ¢ {-r’cin’l + r2sin? cos® (w1 - P)” .

;Thin expression has to be expanded in Taylor series about the surface
‘Ix| = @ + ¢R; + ¢?R;. Such vectorial manipulations are most ewsily
'd‘g:e in a Cartesian representation, and accordiugly we express the
-above as

V = [~(sinwt + ey)e; + (coswt + s2)e, ] (s1)
x [1 ~ 2 (zcoswt + ysinwt) - ¢ (gsinwt -.cosul)’] +o{e?).

Expressing the above to consistent order
V = {[-sinuwte, + coswte,] + ¢ [(-y + 2sin st 2 COrt + pant) i€,

+(2 - 2coswt{z coswt + psinwt)je,} + a8 [(sin-n(: suwl - 'cu..ul)"'
2yizcoswt + yeinwt))e, ~ (coswtie sinwt - yoonot)’ (92

4222 coswt + yinwt))e,l} + ofc?).

(83) ‘




s

I.v_nlwh- at O(e)
At O(s) the axpressions for the quantities required are
(V=Vo)-a, = (~3+2tinut({acost +ysiswt)) +
(s-Zmu(th'kldlU‘))g

= i’_:.f ain(2we) - 3-:-’ cos(2uwt). (83)

This can be expressed in terms of the spherical hasmonics by wsing
the relations given previously as

(v - vo”v-. M AY”('. ,) + A'Yz.’(.l ’)l (“)

where
A-.‘/g(-inwumzu). (95)
and the su ript » indicates complex conjugation.
The otgu upl:cuion tequiring cl:rltlnﬁon !t this order is:
Vo:Vila, ® ~8coswt + ysinwt],

= ~a [!l‘-}?: coswt ~ 651—%‘.—‘ sinwt]

- % [(conwt ~ isinut) Y0, ) + (coswt 4 isinut) Y; (0, )(90)

This may be written in the form
Vo Vil,a, = (a¥}(0,9) + 2 (0,0)).
whare
a= -3; (coswt - isinwt). ((24]
lunm.:. u—0
limixl—a’ i
Ro = ¢d
Te, ~ -~

\bJ moving frame

“Ted frame lob] = ¢

Figure 1: Problem Geometry
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Abstract
The presence of cavities in a liquid can have
significant effects on its behavior and ils flow
characteristics. In practical flow situations, these

effects cannot be fully understood or predicted

without addressing complicated, but nonetheless
fundamental phenomena associated with the dy-
namics, interactions, and deformation of bub-

bles. The importance of these phenomena has -

long been recognized, but has largely been ne-
glected due to the difficully of the associated
mathematical problems. In this contribution,
bubble shape oscillations in response to nonuni-
Jorm flow fields and/or due to their interaction
with other bubbles are considered using botk o
matched asymptotic ezpansions technigue and &
Jully three-dimensional boundary integral method,

Results from both approsches in & few par
ticular cases are compared, and the limits of
application of these methods for these cases is
assessed.

Nomenclature

70,
Tioy
L,
To,
lo,
T01
¢,
t
"
b,
¥,
o,
g'
M,
R,

*also Research Professor The Johns Hopkins University,

characteristic bubble size,

characteristic bubble time scale
outermosi characteristic flow length scale
characteristic flow time scale
bubble/boundary distance scale
interaction time scale,

ratio between riy and I

time

bubble velocity potential in moving frame
bubble velocity potential = ¢ ~ ¢y

total velocity poteatial

basic velocity potential

velocity gradient scale

velocity bigradient scale

ith component of the bubble radius

. Baltimore MD

Introduction

The presence and dynamics of bubbles and cavities in
a flow field can have significant effects of relevance to
engineering applications. These effects include erasion,
noise generation, dampiag of acoustic signals, degrada-
tion of performance...etc /1,2, 3, 4}. This has instigated
a great interest in the study of the problem, and thou-
sands of publications have been devoted to the study
of cavity flows since the early work of Rayleigh {5] and
Besant [6]. Due to the complexity of the general math-
ematical and physical problem, most approaches have,
however, been limited to the study of spherical, isolated
bubbles, or to elongated linearized two-dimensional cav-
ities. More recently, with the advent of new mathemat-
ical and computational :ools, increasing attention has
been given to the study of more practical cavity con-
figurations: namely nonspherical bubbles and bubble
clouds. Nonspherical axisymmetric bubble dynamics,
such as in the vicinity of a solid wall or a free surface
were most particularly studied (7, 8, 9, 4. All these
studies were restricted to the simplified case where the
bubble is in a quiescent fluid and where external forces,
if any are potential, and act in a direction perpendicular
to any nearby rigid or {ree boundary. Advantage was
taken of the axisymmetry of the resulting problem. De-
viations from these simpiifying assumptions could sig-
nificantly influence the results. In fact, in most practi-
cal cases bubbles are neither isolated, nor in a uniform
flow or in a quiescent fluid. Common examples include
cavitation bubbles near propeller blades, large cavity
dynamics near complex geometries in a gravity feld,
dynamics of bubble clouds, and bubble dynamics in a
shear or boundary layers.

The dynamics of bubble clouds have also recently re-
ceived a lot of attention {10, 11, 12, 13|, especially since
they have been observed to produce dramatic deleteri-
ous effects, which cannot be explained with approaches
based on single bubble dynamics.




All these studies but {9, 11}, have considered only
the contribution of the bubble volume change on the
cloud dynamics, and have either neglected bubble Auid
relative motion and bubble deformation, or restricted
their approach to acoustic perturbations.

In a first approach, based on the method of matched
asymptotic expansions, we consider these effects in the
limiting configuration where the bubble size is small
compared to inter-bubble distance (small void fraction),
or where the bubble size is much smaller than some
characteristic length sca's of the surrounding flow.

These include problems of bubble dynamics in nonuni
form flow fields (bubble dynamics in the flow field of a
vortex or near a headform) and the inclusion of com.
pressibility. In these cases, the small perturbation is
chosen to express small but not negligible interactions.

This limitation is removed in a second parallel ap-
proach where a fully three dimensional numerical method
is developed. This method has been tested for bubble
dynamics in a quiescent fluid {14, 15}, and has been re-
cently used for the investigation of bubble dynamics in
complex flow fields such as vortical, boundary and shear
flows {16, 17).

In this contribution we will present first the model
used for the bubble dynamics (Section 1). We will high-
lig! * =flects taken into account and attempt to describe
the limits of validity of the model. We will then describe
in generai terms the asymptotic approach used {Section
2). In Sections 3 to 5 bubble behavior in nonuniform
flow fields, partizularly the flow about a headform and
in a vortex flow are described. In Section 6 the same
method is used to describe the particular configurations
of multibubble clouds with a particular note on the ex-
tension of the method to the case where the bubbly
medium is slightly compressible. In the following sec-
tions the studies described above will be extended to
very large deformations and interactions. The numer-
ical method used will be described in Section 7 while
Sections 8 will consider the particular cases of bubble
behavior in a sheared flow field near a solid wall, in a
vortex flow, and for a multibubble configuration. Fi-
nally some conclusions are drawn from the results.

1 Bubble Dynamics Model

We will consider mostly cavitation bubbles where rel-
atively large bubble wall velocities are involved and
where, as a result, viscosity has no appreciable effect
on the growth and collapse of the bubbles. The study
will also be restricted to the case where the flow veloc-
ities remain small compared to the speed of sound in
water, and as a result, we can neglect or approximately
account for compressibility effects. This is usually valid
until the latest collapse pliase. The above two ass. np-
tions, classical in cavitation bubble dynamics studies,
result in a flow due to bubble dynamics that is poten-
tial (velocity potential, ¢y(x,t)) so that uy = V¢, and

which satisfies the Laplace equation,
Vi =0. (1)

In our numerical work this assumption is not imposed
on the “basic flow,” i.e. to the underlying flow existing
in absence of the bubble, . In addition, compressibility
of the liquid, or of the bubbly medium in the case of a
bubble cloud, can be considered in an “ad-hoc” fashion
through a delay time for the propagation of information
between the source and a field point, as well as through
a compressible model for the spherical component of the
bubble oscillations. The solution must in addition sat-
isfy boundary conditions at infinity, at the bubble walls
and at the boundaries of any nearby bodies. At all
moving or fixed surfaces (such as a bubble surface or
a nearby boundary) an identity between fluid velocitics
normal to the boundary and the normal velacity of the
boundary itself is to be satisfied. For instance, at the
bubble-liquid interface, the normal velocity of the mov-
ing bubble wall must equal the normal velocity of the
fluid, or,

Vép-n=V,-n, (2)

where n is the local unit vector normal to the bubble
surface and V, is the local velocity vector of the mov-
ing surface. This equation expresses the fact that the
bubble surface, B(r, 8, ¢,1), is a material surface of the
liquid
%‘: = 0. (3)

The bubble is assumed to contain noncondensible
gas as well as vapor of the surrounding liquid. The
pressure within the bubble at any given time is con-
sidered to be the sum of the partial pressures of the
noncondensible gases, P,, and that of the vapor, P,.
Vaporization of the liquid is assumed to cccur at a fast
enough rate so that the vapor pressure remains constant
throughout the simulation and equal to the equilibriuin
vapor pressure at the liquid ambient temperature. In
contrast, since time scales associated with gas diffusion
are much larger, the amount of noncondensible gas in-
side the bubbles is assumed to remain constant and
the gas is assumed to satisfy the polytropic relation,
P,V* = constant, where V is the bubble volume and
k the polytropic constant, with k = 1 for isothermal
behavior and k = c,/c, for adiabatic conditions. In
previous studies the influence of heat transfer (18], and
gas diffusion {19] on the dynamics of a bubble cloud was
considered. We will neglect these effects in this presen-
tation.

The pressure in the liquid at the bubble surface,
Py, is obtained at any time from the following pressure
balance equation:

P.=P,+ P (sz)“ ~Co, (4)

where P,, and Vg are the initial gas pressure and vol-
ume respectively, o is the surface tension, C the local
curvature of the bubble, and V the instantaneous value




of the hirbble volume. Here P,, and V; are known quan-
tities at ¢t = 0. The curvature and the normal, n, to the
surface B are given by:

vB

C=V- T e—
n n [9B] (5)

2 Asymptotic Theory for Bub-
ble Flow Interactions

The asymptotic method that we have developed is cen-
tered on the following approach. Whether the prob-
lem considered is that of bubble interactions in a cloud
or that of the interaction between bubbles and 2 non-
uniform complex flow, the problem is addressed by a de-
composition of both time and space domains into mul-
tiple scales. For instance, the dynamics of any bubble is
obtained by considering an inner problem of scales ryg, a
characteristic bubble size, and ry, a characteristic bub-
ble time scale. The overall flow field, on the other hand
is addressed by considering an outermost problem with
scales Lo, a characteristic ow length scale, and T, a
characteristic flow time scale. Using the same proce-
dure, an intermediate outer problem is introduced with
outerscales such as a characteristic length scale of inter-
bubble distances or bubble/boundary distances, Iy, and
an interaction time scale, 7o. Finally, a far-field acoustic
field scale can be introduced based on the length, cn,,
where c is the srund speed in the liquid.

An asymptotic analysis of the problem can be de-
veloped when these various scales are of different orders
of magnitude. For instance, for bubble/bubble interac-
tions in a cloud or for bubble/flow interactions near a
boundary an asymptotic approach can be introduced
when ry is much smaller than Iy, in which case one
could use the ratio between ryy and Iy as the small per-
turbation parameter, ¢.

e=73 (®)

The outer problem is associated with the macroscopic
behavior of the bubbles in a bubble cloud or in a com-
plex flow geometry. A bubble then appears as a super-
position of singularities of various orders. If more then
one bubble is involved, the summation is to be carried
out over all the bubbles. The inner problem obtained
when the lengths are normalized by ry, provides the
microscopic details of the behavior of the flow in the
vicinity of an individual bubble center (B;). The pres-
ence of the other bubbles or boundaries, all considered
to be at infinity in the inner problem, is sensed only by
means of the matching condition with the outer prob-
lem. The boundary conditions at infinity for the inner
problem are therelore obtained at each order of approxi-
mation by the asymptotic behavior of the outer solution
in the vicinity of B;. Thus, if one knows the behav-
ior of all bubbles except B;, the motion, deformation
and pressure field due to this cavity can be determined

y, ={ P (cos 0) cos myp;

by solving linearized forms of the equations presented
in the previous section. At the lowest order, ¢ = 0,
each bubble (of index i) behaves spherically as il in
an infinite medium and the time dependence of its ra-
dius, a(t), is given by the Rayleigh-Plesset equation if
the medium compressibility is neglected, [20], or by the
Keller-Herring equation [21, 24] for example if a slight
compressibility of the medium is taken into account (see
section 6).

The combination of all these first approximations of
each inner problem provides a description of the whole
first order flow field (i.e. a distribution of sources or
sinks representing all bubble oscillations). The behavior
of this outer flow field in the vicinity of each bubble
sets the boundary conditions at infinity at the lollowing
order of approximation, ¢, for the corresponding nner
problem. The same process is then repeated for the
successive orders.

At all orders solutions of the Laplace equation are
expanded in general form as .pherical harmonics and
the bubble radius equation is expanded in surface har-
monics:

oo J ) Bim -
¢(1‘, o,¢,t) = Z Z (Aljm"’ + r)—’L—)Y,,,,(0,¢), (‘)
J=s0m=~j
o0 b
r= R(ov‘r’at) = Z Z Rl)m(t)y)m(oe v} (8)
j=0m=-;

In what follows, quantities indicated with a superscript
"~ are inner variables, while those with a superscript -

refer to outer variables. The Yjm are given by:

form >0
form <0

9
P}""(cos 8) sin [m|y; ()
Then all quantities, x, particularly @, $,andR, are ex-
panded in powers of ¢ as follows:

X = Xo + EXI(rv 9: ’f’") + 52X2("» 0, ‘?vt) + 0(53)' (10)

3 Bubble Behavior in a Nonuni-
form Flow Field

Let us consider a basic flow field (flow in absence of
the bubble) that is potential and steady, with a veloc-
ity vector Vg deriving from the potential ¢g. Let the
pressure be py and the liquid density p. The velocily po-
tential satisfies the Laplace equation and the Bernoulli
equation:
2 1 2, P

Vigo =0, E(Véo) + 7 = constant. (11)
Let ¢' and p' be the potential, the speed and pressure
in presence of the bubble. We now have similar equa-
tions as (11-12) with these complete flow variables. In
addition, far away from the bubble, we have

¢' = oo,




and the continuity of the normal velocities at the bubble
wall can be written:

We will consider now the bubble potential, ¢y, differ-
ence of the potentials ¢’ and ¢y.

6= ¢ — do. (13)

Since at infinity V} and ¢, decay to zero, and the pres-
sure is pg, the Bernoulli equation becomes:

( a¢b

(12)

+5(VAH 3V + V¢0'Vo+%,}nn=

- fpar3], oo

where we have limited ourselves to the case where the
basic flow is steady. The right hand side of the equation
is a constant of the basic flow field.

At this time we can transform the above equations
to those in a coordinate system with origin o moving
with a velocity prescribed Vs, and decompose this ve-
locity as

Vi =V.z+&x oM, (15)

where V., is the translation velocity of o, and & is the
rotation velocity with respect to the fixed frame.

Making the transformation, the system of equations
of the problem becomes, ¢ being the velocity potential
of the bubble flow in the moving frame:

84=0; lim¢=0; {Vé-n}luu=0,

{V¢-n=%+(V.—Vo)+&xoM-n} .

raR

« =& x oM) - Vg+

+306-v+ 2 o), (16)

The pressure at the bubble wall and the pressure inside
the bubble are related through Equation (4).

{3+ 3ver+(vo-v

Nondimensionalizations
All equations can be normalized using the following
scales. In the outer problem:
r =l# lg : the initial bubble wall distance
® = et ® et : Outer velocity potential scale
In the inner problem:

R =ro R ry : the initial bubble radius
P = Ap.ﬁ Ap : pressure change scale
t =Tot To : characteristic collapse time

¢ = rgci:z/To r3/To : inner velocity potential scale
Yo = vol.’o vg : basic flow velocity scale
VVo =¢VV, ¢ : basic velocity gradient scale

The matching conditions between the inner and the
outersolutions is obtained by formally writing that there
exists an intermediate region characterized by r°, ro <
r* € ly where both solutions are valid. This leads to:

3. r
B 55) = b D) a7

Taylor series expansions of the basic velocity

Since we are considering the case where the size of the
inner region is small compared to the characteristic
length of the basic flow, we can express the velocity
field in the inner region as a Taylor series expansion
about the moving origin o.

Vo(f) = Vol + - V'/v,,]o + %i-- VVVo| -+ 0()
o

In order to compute the various terms in Equation
(16) we need the following quantities:
Vo(r)=V. = Grof-VVy(o)+
%rgﬂi-vvvo(o)-i+---
(18)

(Vo(r) = V) - 94 = F 4 - (GTek - VVolo) +
= HT"ro F-VVVq(o) F+--

Vi) -V3) = (cT 2 . YVi(o)- Valo) +
% Tovoﬂr VVVo(O)-i'-Vo(OH
1 (6Tof-IVo(0) +---  (19)

where vy is the characteristic velocity of the flow field,
@ the characteristic dimension of the velocity gradient
and M the characteristic dimension of the velocity bi-
gradient.

4 Problems with a Plane of Sym-
metry

We now consider the problem of a bubble in a flow in the
case where there is a plane of symmetry. This assump-
tion is not fundamental and has been made to simplify
the analysis. The general theory is first developed, and
is then applied to the problem of a bubble collapsing
near a semi-infinite bluff axisymmetric body in a uni-
form flow field.

Problem formulation

We will choose a coordinate system Oryz fixed to a
streamline, V4 = Vg(o(t)), so that the z-axis is parallel
to Vo(0); Vo = vg(t)e,. If we consider the case where




the problem is symmetrical about the (Ozz) plane then

. [+ 11 ]} a3
VVe(lo)=] 0 0 0 (20)
[+4] 0 bt ¢+ 3 ex.oy.ex

As aresult £-V'Vy(0) and #- VVVy(0)-F can be written:

A [ T ] [ oz + agz ]
VVe(o)-| ¥ = 0
2z ex.ey.ez -1z + agz cartyts
G.(6,v)
= r| Go0,9)

Gy(0,%)

z . z ]
y -VVW(0) | v =
z €z.8y,Cs 2

4 es.ey,0:
Mmz22 + 27322 ] H,
0 = | H,
Y42? + 27322 | creps H,

where we have transformed the quantities from carte-
sian coordinates (z, y, z) to spherical coordinates (r, 8, ¥)
with the polar axis along the z axis. In the above equa-
tions:

29 _ O
m= gz ’ oz’
_ [+ 1] aal
Y3 = az y T4 = 63 (21)

Since the problem has a plane of symmetry, we shall
take & =w(l)ey,

dxoM=wr (ey x e,). (22)

We nondimensionalize w as w = Q&, where  is the
characteristic rotation speed of the frame.

Domain of validity of the asymptotic
solution

The choice of the relative sizes of the six nondimensional
parameters of the problem to consider was determined
first by application of the least degeneracy principle.
This was then relaxed in order to obtain solutions in
some practical physical configurations. The analytical
and numerical solutions presented below are based on
the following sizes of these parameters relative to «.

1. The characteristic length of the inner problem is
smaller than that of the outer problem, ro/lp << 1.

2. The characteristic velocity of the initial flow, vo,
is of same order as the characteristic collapse velocity,
Vg = O(ro/To). '

3. The characteristic basic velocity gradient is of the
order of € in the inner problem: §Ty = O(e).

4. The characteristic velocity bigradient at the scale
of the inner problem is far smaller than that of the inner
problem: HTyro = O(e?).

L B

5. The characteristic rotation speed at the scale of
the inner problem is smaller than the collapse velocity:
QT = 0(8)

6. The collapse velocity is directly related to the
local pressure by pvl,;,,,../8p = O(1).

The bubble is considered to be close enough to the
submerged body so that at leading order, €°, in the
outer problem, the body appears as an infinite flat wall.
At subsequent orders, the curvature is taken into ac-
count. This means that the ratio of the bubble standoff
distance to the local radius of curvature of the body is
of order €. In the inner problem, the effect of the wall
is seen first at order ¢ for the potential and at order £?
for the bubble radius. The effect of the curvature only
intervenes at order ¢? on the potential and only adds a
constant to the equations.

Order €°

The system of equations described above reduces at or-
der ¢® in the inner problem to that of an oscillating

spherical bubble:
—Ro' R, (23)

where Ry is determined by the Rayleigh-Plesset equa-
tion

do=gq/f with ¢=

.2 3:2 . 3K
Robo+ 3Ry = P(17F-1) (24)
- Wt =~ "") - ap,
(Ro Ro p
where W = APRo/o and P = (ps ~ pu)/ AP, with the

initial conditions: Ro = 1 and Ry = 0. In the outer
problem the general solution (7) reduces to

o = Bo(d) Po(c0s8) (s + ) (25)

The matching condition between the two problems
can be written

F° [$o(?) + ed1() + €*éutf) + O(e)] =

bexe [Bo(F) + €d1(F) + €2611(F) + O(e”)] (26)
which leads to:
2 -
b =cqti Bo(D=q(d: Jimdi =3 (27)
0

Order ¢

After accounting for the solution at O(£°) the equations
of the problem at O(¢) become:

Bd = 0; Jim 61 =2

{ 3%

62%} 301 -G. Ro

¢‘ arz a -




ad 33y 8¢, 0o 3do 3’¢o
{ +¢|F‘.E+ar ar+¢| +(28)
Roc, + pvs(t)Ro F(0, ¢)} = 3KP RG>
*=Ro
where
G. = 2azcosdsindcosy + ay(sin® 0 cos® Y — cos® @)
F = asinf cosp +azcosd (29)

Resolution of the order ¢

Using the general solution of the Laplace equation, the
limit condition at infinity on ¢, leads us to take:

Aijm = 60 9/2, (30)

Since the problem is symmetrical about the (Ozz) plane,
there are no terms in sin ¥,and we do not have to con-
sider m < 0. Equation (16) becomes:

JR"*' IBI,.,.Y,m + ;%R,,,..Y,m = Ryjm¥im +
— -RoagYn + oy Ro(Yzo - ZE)'
% + %;é_'_:.yjm - ROR,,,,.Y,... + qRSH B""‘y”" +
- 2-}%%—311'--":"" - %qaﬁﬁn t
q Yu

—fiom(_ —Y) + pRovi(a1Y + aztio)

=  RioYes3KPRG*! (31)

For j > 2 we have a homogeneous linear differential sys-
tem where the initial conditions are zero. The solution
is therefore Ryjm = Bijm =0; Vj > 2.

The equations for the non-zero terms at order ¢ as
well as all equations obtained at order ¢ can be found
in Reference [22]. At order ¢ the bubble behavior is
modified by both the presence of the wall, which at
this order only appears as a flat plate, and the presence
of a pressure gradient. At the following order ¢? the
curvature of the wall comes into play as well as the
velocity bigradient.

Application to Bubble Dynamics near
a Headform

We consider now the dynamics of a bubble near a semi-
infinite bluff body. The velocity potential considered

is that due to a superposition of a uniform flow and a
source of intensity Q located at the origin:

bo=Voz + 2 (32)

This simulates the flow field about a Rankine body of
radius, R = \/;9; and stagnation point at X = —R/2.

At order ¢°, the outside pressure Ap(t) is taken to be
the pressure in the fluid in absence of the bubble along
the trajectory of a fluid particle. At higher orders of ¢,
the gradient and bigradient are also taken into account
while following a fluid particle.

A fourth order Runge-Kutta procedure is used to
solve the ordinary differential equations presented ear-
lier. To illustrate the method, a Rankine body with a
radius of 10 centimeters with flow at infinity advanc-
ing at a velocity of 1.15 m/s was selected. Figures 1
through 4 show some results obtained on bubble be-
havior near the Rankine body. Figures la through lc
show a case where the interaction between the bubble
and the flow field is significant. The initial bubble ra-
dius is rp = 1 cm. and its distance, lo, from the wall is
such that € = rg/lg is equal to 0.3.

Figure 1b shows the trajectory of the bubble cen-
ter along the body, and Figure lc shows the pressure
and velocity variations with time. In the initial phase
t < 2.0 the bubble sees a pressure drop. Later, the
pressure rises back towards the ambient pressure. This
velocity is also that chosen for translating the origin
of coordinates in which the bubble shape is prescribed.
Figure la shows, overlaid on each other, the bubble cou-
tours at different times (from ¢t = 0.175 to 2T, during
.the bubble growth and collapse. The orientation of the
;bubble relative to the body is the same as illustrated
‘in Fxgure 1b which shows bubble positions versus time.
‘It is apparent from the contour plots that the bubble

moves toward the body wall during its collapse. Due to .

the velocity and pressure gradient around the body the
bubble elongates and in fact rotates around its center
of mass. Initially, the side of the bubble surface facing
an intermediary direction between the downstream di-
rection and the wall direction flattens out. A reentrant
jet is then produced perpendicular to that face. The
direction of the jet appears to change with time in a
fashion indicating increased influence of the presence of
the wall. The computations shown in the figure stopped
when the bubble wall touched the origin of coordinates.
This moment will be delayed in future computations by
selecting an adequate translation of the origin of coor-
dinates that is perpendicular to the wall.

Figure 2 shows the influence of the distance of the
bubble to the wall, or ¢, on its shape history. Bubble
collapse contours are shown for ¢ = 0.15,0.3 and 0.6. As
expected, deviation from sphericity increases with the
proximity to the wall. Due to stronger shearing action
closer to the body approaching the wall has th: eflect
of increasing bubble stretching and elongation during
its growth, then reinforcing the reentrant jet formation
during the collapse. For &€ = 0.3 and ¢ = 0.6 the com-
putation stopped when the bubble surface touched the
origin of coordinates. However, due to the weak nature

- of the interaction for € = 0.15 the collapse is completed

with no reentrant jet and is followed by a bubble re-




bound or second growth that is not shown on the figure.

Also, as expected, a similar effect as in figure 2 is
obtained if the distance to the body is maintained con-
stant while the bubble size is changed. Figure 3 shows
such a case, where the distance between the bubble cen-
ter and the wall is maintained at 3.333 cm, while the
bubble size is varied from 0.5 cm (¢ = 0.15), to 1 ecm
(¢ =0.3), to 2 cm (¢ = 0.6). Here too the jet is seen to
rotate to become closer and closer to perpendicular to
the wall.

5 Bubble/Vortex Interaction

One of the most fundamental phenomena observed in
flow cavitation is the capture of bubbles/nuclei by vor-
tices. The problem of the interaction of a single gas bub-
ble and a Rankine line vortex is amenable to treatment
via analytical techniques. Here we also apply to this
problem the method of matched asymptotic expansions
described above. To do so we assume that the length
scale characteristic of the bubble, ry, is small compared
to the initial distance from the bubble to the vortex, d.

The analytical results have been tested for a plau-
sible set of parameters, and yield physically reasonable
solutions. The solution shows that the bubbles are at-
tracted towards the vortex center, and that a jet ap-
pears on the side of the bubble opposite to the flow
direction. Further investigation of the parameter space
and computation of higher order corrections are cur-
rently underway.

Problem formulation

Consider a spherical bubble initially at rest in an in-
compressible, inviscid liquid at a distance d from a line
vortex of strength I'. The pressure at infinity is peo
and the velocity due to the vortex alone (i.e. excluding
any bubble effects) isVy. To perform the calculations
we consider, as in the previous section, two coordinate
frames. The first is a fized frame which is convenient for
describing the overall flow, one axis of which coincides
with the vortex axis. The second is a moving frame
which has its origin initially at the center of the bubble
and moves at the liquid velocity in the absence of the
bubble. We denote the location of the moving origin by
o.

With the same assumptions as in the previous sec-
tion the equations of the problem, both for the flow
and the boundary conditions on the bubble are the ones
presented in Section 1. Since we are interested in the
modification in the flow caused by the presence of the
bubble, it is convenient to introduce as in Section 3 the
reduced or bubble potential ¢y, defined by

’ r G
¢b=¢"2—rﬂ=¢‘¢w (33)

where ¢, is the velocity potential due to the isolated
vortex and 2 is the angular cylindrical coordinate in

the fixed frame. The quantity ¢, represents the change
to the potential of the flow because of the presence of
the bubble. Because of linearity, the function ¢, also
satisfies Laplace’s equation and conditions described in
Section 3.

We now consider the moving system of coordinates.
The coordinates are initially coincident with the bubble
center, and move with the flow at that location in the
absence of the bubble while the Cartesian axes remain
parallel to those in the fixed frame. Let ¢ denote the
bubble velocity potential in the moving frame.

¢5(X, l) = ¢b(x, + o, t) = ¢(x" t) (34)

where X' is x referred to the moving frame. The velocity
V is expressed in the moving frame as

r
V= 37 % e (35)

where e; is a unit vector along the shortest line joining
the point at which the velocity is to be measured and
the z axis of the fixed system, and ! the length of this
line. The velocity of the moving coordinate system is
then:

Vo = —[:-[— sinwt ey + coswt ey, (36)

By maintaining the moving cartesian axis parallel to
the fixed frame axis we obtain the same equations for
¢ as in Section 3, withw = 0.

Dimensional Analysis

As in the previous section the flow is assumed to be
divided into two regions, an external region where the
effects of the vortex dominate, while the region close to
the bubble is dominated by its dynamics. The length
scale characteristic of the bubble region is ry,, the initial
bubble radius, while the outer problem has as scale d.
We will consider the case where ¢ = ry,/d is small. The
physical quantities entering the problem are py and ry,
(from the bubble), and pe,T', and p; from the liquid.

The matching between the inner and outer problem
and the application of the principle of least degeneracy
leads to the condition that the scaling for the velocity
V be such that it is of the same order as the bubble
deformation velocity

r Tho
Vi~ i~ T (37)
The nondimensional velocity is then defined by
V= nv—- with @ = 1224 (38)
\7?«»/

This imposes the following restriction on the gradient
of the vortex velocity field

(Vig = Vo) ~ 7| VV| ~e'T—';. (39)
We will denote

V-Vo =e2qv,, (40)
T




An important quantity is the rotation frequency of a.
particle around the vortex line. This is given by

r
e~ 4D

The ratio of this frequency and the Rayleigh frequency

_ is seen to be

wTo= r : 2’;‘:‘ ~ Oe). (42)

Asymptotic expansions

After expanding the equations of the problem described
earlier as indicated in Section 2 these are solved up to
and including terms of O(¢). As in the previous sec-
tion problem upon introducing the expansions, the lead-
ing order problem €° reduces to the spherical oscillating
bubble problem. This problem has solution

¢o = qo/r = ~R3Ro/r, (43)

which yields the following Rayleigh-Plesset equation for
R

- 3.2 2w-t
Roflo+ 3Ra’ = PoRg™ - —5—+ (Pu+9° - 1) (44)
where
Pg0 Pv

P, = = P, = —_ 45

I Poo Poo ( )
Order ¢!
The equations at O(¢) are
Vi, =0 (46)
subject to
o0 _hop| o

o 2R‘,R‘ n =5 +QVy-ep, (47)
and

.2
84" =+ Ro“‘ +R (2% + Ro) + +51

+RoVy- e+ Vo Vi, = 3kP, it +

__er},;:( (1-1)2(1+2)) 48)

=l mm—i

Introducing the expansion for the function R, and ¢,
similar to that in Section 2, with the difference that the
Yim(0,p) are defined here as

Y(0.0) = ,I 2Ll pii(cos ) cxp(ime).

the dynamic boundary condition becomes:

. .\ 2 -
'TI {rllm +2 (‘;.—;f'llm - (g%) Tum + %r"ﬂ) +

+Q(A3 + A.";'-z)} + lfol ("'u- + 2%’1:-'4'

2
+Q(AG? + A°557Y) - (2-% + i}.,) Tim =

rms., 2wru..( _(1—1)(1+1))
t e R\ T 2 )t
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-3kP,

a= %‘L(muz —isinwt). (49)

Examination of the above equation reveals that, ex-
cept for (I,m) = (2,2), (2,-2), (1,1), and (1,-1) the
equations are homogeneous second order linear diifer-
ential equations (initial value probiems). Since we have
assumed the bubble starts from a spherical shape, and
is initially at rest, the solutions to these equations will
vanish identically. For the four non-trivial cases, the
differential equation satisfied by the particular radial
component may be written as follows:
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where

i1~ 11—
Ru 1= 111 ' 11,—1
T23 — M3.-2 (54)

Ryyp=rin+riz-a Rua-a= -

Ry =rmi+ri- s

In terms of these new coefficients the surface of the
bubble (in the moving coordinate system) is given by

r=Ro+s¢ [(Rlll cosyp — Ru.-] sin ¢) sin 0+
(Rincos2p - Ria,-psin2p)sin’ 8] + O(e?).  (55)




Results and Conclusions

We present here some results from a numerical study
using the above equations. The equations involve 4 pa-
rameters - P,, P,, 1, W and the perturbation parame-
ter €. In the following we have not attempted to map
the parameter space of the above equations, but rather
demonstrate the characteristics of their solutions for a
particular choice of the parameters and show that they
make physical sense. We choose the following for the
physical parameters: P, = 1.03 x 10°Pa, Ry = 10~3m,
d=5x%x10"%m, I = 12m?/s, P, = 2 x 10°Pa, 0 =
7x1073N/m, Py = 3x 10*Pa, p = 103kg/m3, k = 1.4.

This yields the following for the non-dimensional pa-
rameters: P, = 2.9126 x 107!, P, = 1.94174 x 10732,
W™ = 6.7961158 x 104, 1 = 3.764 x 107", T =
9.85 % 107%, ¢ = 0.05w = 7.53 x 1073.

The equation systems at O(1) and O(e) are inte-
grated using a simple fourth-order accurate Runge-Kutta
scheme. The results from this trial run are shown in Fig-
ures 4-6. The results indicate that the expression for the
bubble becomes multivalued for times after 4.6Tp, i.e.
the origin of the local coordinates lies outside the bub-

ble after this time. Thus results of the integration up to"

this time are shown. Figure 4 shows a cross-sectional
view of the bubble in the z,y plane at various times.
The bubble motion and deformation, and the forma-
tion of the jet are clearly seen. The bubble initially col-
lapses almost spherically (while moving with the vortex

flow), and reaches a minimum at approximately 1.55T,
and grows till it reaches a maximum size at 2.9T,. It
subsequently collapses and shows the formation of a jet
on the side opposite to its direction of motion, and di-
rected towards the vortex axis. The computations are
stopped at 4.6T; when the bubble no longer contains
the origin of coordinates. Figure 5 shows the trajectory
of the ¢ = 0 and ¢ = x points in this cross-section. Fi-
nally Figure 6 shows cross-sectional views of the bubble
at the same times, but in a normal plane. This plane
contains the z axis and the line connecting the moving
coordinate origin and the vortex. The fact that the jet
is directed towards the vortex axis becomes apparent in
this view.

Quite obviously a more systematic study of the pa-
rameter space is required. Also, as in Reference [28]
the results of the asymptotic analysis and of the 3D
boundary element program 3DynaF$ must be com-
pared. Qualitatively the same types of results are ob-
served. The expression used for the motion of the mov-
ing coordinate system must be refined to prevent bubble
function becoming multi-valued so early in the collapse.
These and related aspects are items of current research.

6 Bubble Cloud Study

Consider a cloud of N bubbles of radius r, i = 1,--- N
immersed in a liquid. The bubbles are initially assumed
to be at rest and at equilibrium with the surrounding
fluid. The characteristic radius of the bubbles is ry.
We denote the distance between bubbles i and j as {,,,
which we take to be of the order of the characteristic
distance l,. We define as belore ¢ as ro/l.

The matched asymptlotic expansions method
described in the previous sections was implemented ear-
lier in [11, 25] to study the behavior of such a bubble
cloud. Here we will only sketch an outline of the mnodel.
We assume that the characteristic geometric scale of
the cloud (lp), is small compared to the outside driving
pressure field scale (Ly), but is much larger than the
typical bubble radius r. Therefore, to first approxi-
mation, the same driving pressure is assumed Lo be felt
at the same time by all bubbles in the cloud. Varia.
tions of this pressure due to the position of each bubble
are only seen at the higher orders. In a more general
case, the pressure felt by each bubble is dependent on
the bubble location and on the modification of the out-
side flow field by the presence of the bubble cloud. We
are presently implementing such an approach which ac-
counts for the compressibility of the two-phase bubbly
medium.

Since ¢ is the ratio ri/ly, it is directly related to the
void fraction here assumed to be low. Al the lowest or-

der, ¢ = 0, each bubble (of index i) behaves spherically
as if in an infinite medium and the time dependence of
its radius, aj(t), is given by the Rayleigh Plesset equa-
tion, [20]. If the compressibility of the medium is to be
included, then an equivalent equation such as in [24] can
be used. This first approximation of the whole flow field
(a distribution of sources or sinks representing all bub-
ble oscillations) sets the boundary conditions at infinity
at the following order of approximation. The same pro-
cess is then repeated for the successive orders. Up to
the order O(¢%), one can show, [11, 25], that the influ-
ence of the remaining bubbles on each bubble B;, can
be schematically replaced by the influence of a single
equivalent bubble centered at G;. The growth rate and
position of this equivalent bubble are determined by
the distribution and the growth rate of the other cavi-
ties. In general, this fictitious bubble equivalent to the
“rest-of-the-cloud” and the corresponding “cloud cen-
ter” and “equivalent bubble intensity” are different for
each bubble. If §;, is the angle between the centers’
direction B;G{ and the direction of a field point B;M,
the equation of the surface of the axisymmetric bubble
B; can be written in the form:

R(o.',.s')l.t) = a;(l) + 5“';(‘) + ‘2[“;(‘) + f;(t).coso.',]
+€’[a3(t) + f3(t)- cos 0y, + gi(t)Pa(cos 0y4)] + (%),

where P; is the Legendre polynomial of order 2, and ar-
gument cos 0;;. The components, a),, fi and g, satisfy




linear second order differential equations which can be
written in symbolic form as follows:

' L]
Das) = 3 () Fah v Palcontiy). (50
2
Here Dy(y.) represents a differential operator of the sec-
ond order in time acting on the radius component y;, (
one of ai, fi,g.) of the bubble i ; [§ is the initial dis-
tance between the bubbles B; and Bj; Fj(y, ... ¥é-,)
is a known function of the terms (y}), determined at the
preceding orders; m is an integer indicating the order of
the spherical harmonic; 8;, is the polar angle measured
wth respect to the line connecting the center of the bub-
ble i and the center of the equivalent bubble B,; and n
is an integer indicating the order of the approximation.
The detailed expressions can be found in Reference
[11]. The behavior of B; can then be computed by inte-
gration of the obtained system of differential equations
using a multi-Runge-Kutta procedure. The behavior
of the whole cloud is thus obtained. Earlier studies
[11, 25, 18] have shown that collective bubble behavior
can have a dramatic effect on both bubble growth and
implosion. Specifically, bubble growth is inhibited by
bubble interactions, while bubble collapse is enhanced.
This cumulative effect comes from the fact that the in-
teraction reduces any driving pressure drop as a result
of the other bubble growth, while it increases the col-
lapse driving pressure as a result of the other bubble
collapse. Due to the cumulative effects of the collapse
of all the bubbles in the cloud, each bubble ends its col-_
lapse under the influence of a pressure which is orders of!
magnitude higher than that for an isolated bubble (see
Figure 9 described below and corresponding discussion)

Extension to a slightly compressible liquid

The incompressibility approximation assumed above can
be relaxed. In this section we extend our asymptotic
treatment of a bubble cloud to the case of a slightly
compressible liquid. Briefly the method followed is that
of expansion in two parameters - the Mach number
M, and the parameter ¢ introduced earlier. We de-
rive O(M) corrections to the in.ompressible equations
(valid till O(€®) discussed above.

To consider the effect of compressibility we consider
the following equations of motion:

1/{dp
;(E-P(H-V)p)-}-v-u:o

(57)
(%“‘- + (u-V)u) + %Vp =0 (58)
dp _ _ dp
=% h= 72 (59)

The flow is assumed irrotational, so that we can define
a velocity potential

u=Ve (60)

Substituting from (59) for the velocity in the equations
of motion we obtain

v’¢+-l— [‘;‘—h+(v¢-vn] =0, (61)
and

8 1 3.,

3‘-+§|v¢| +h=0 (62)

We now coasider the cases where the length scale
Lo = cooTio is much larger than the length scales [y and
T, 30 that

rn€h<L, (63)

and define a new parameter M such that

M=o _ /T

L Coo
We can identify M with the Mach number, and use it
as a perturbation parameter. The details of this calcu-
lation will be demonstrated in a later paper (29}, and
we only outline the approach here, and present some
preliminary results.

The problem can be decomposed into an acoustic
part and a hydrodynamic part. The acoustic part con-
sists of the “far” field corresponding to the pure liquid
far away from the cloud region, while the “near” field
is that in the neighbourhood of the bubbles, and corre-
spouds to the hydrodynamic part of the problem. T'he

near field can be decomposed, as before, into an “inner”
(corresponding to the neighborhood of a bubble) aud
“outer” field (corresponding to the rest of the cloud).

It turns out that if we take M ~ 3 the inner equa-
tions are almost identical to the incompressible ones
until O(M), except that they account for the time re-
tardation due to the compressibility of the medium.

Performing the analysis with this assumption yields
that the preceding equations hold, with the equation of
the bu*ble radius at O(e®) modified from a Rayleigh-
Plesset form to a Keller-Herring form [21]

This equation can be written as

(64)

a, . 3 é\ .4 _
plo-Dea+3(1-5) ¢
1 éa ad
;(1+;+;5)[p.-p~1. (65)
where
k
pa=p.o(¥}) +p-—-2f-. (66)

and c is the sound speed.

This model is being used in in combination with the
bubble interaction model to extend the study to the
case where a slight compressibility of the liquid is taken
into account. Figure 7, for instance shows the influence
of a finite sound speed on the behavior of a bubble in a
6-bubble configuration.




7 Boundary Element Method for
Three-Dimensional Bubble Dy-

namics

In order to enable the simulation of bubble behavior
in complex geometry and flow configurations includ-
ing the full non-linear boundary conditions, a three-
dimensional Boundary Element Method was developed.
This method uses Green's identity to solve Laplace’s
equation. If the velocity potential, ¢, or its normal
derivative is known on the fluid boundaries (points M),
and ¢ satisfies the Laplace equation, then ¢ can be
determined anywhere in the domain of the fluid (field
points P) using the identity:

9 1 a -
//[ aulMPl ¢E{ (I_MFT)] ds = ax¢(P),(67)

where ax = Q is the solid angle under which P sees the

fluid.

= 4,if P is a point in the fluid
2,if P is a point on a smooth surface
4,if P is at a corner of the discretized surface.

A

The advantage of this integral representation is that it
effectively reduces the dimension of the problem by one.
If the field point P is selected to be on the boundary
of the fluid domain (a bubble surface or on any other
boundary), then a closed system of equations can be
obtained and used at each time step to solve for values
of 3¢/8n (or ¢) assuming that all values of ¢ (or 3¢/dn)
are known at the preceding step.

To solve Equation (66) numerically, it is necessary
to discretize the bubble into panels, perform the inte-
gration over each panel, and then sum up the contribu-

tions to complete the integration over the entire bubble

surface. To do this, the initially spherical bubble is
discretized into a geodesic shape using flat, triangular
panels. After discretizing the surface, Equation (66)
becomes a set of N equations (N is the number of dis-
cretization nodes) of index i of the type:

N a¢,
> (A~ Bn) Z (Bij - ¢;) — axd, (68)
i=1

where A;; and B,; are elements of matrices which are
the discrete equivalent of the integrals given in Equa-
tion (66). To evaluate the integrals in (66) over any
particular panel, a linear variation of the potential and
its normal derivative over the panel is assumed. In
this manner, both ¢ and 8¢/8n are continuous over
the bubble surface, and are expressed as a function of
the values at the three nodes which delimit a particular
panel. Obviously higher order expansions are conceiv-
able, and would probably improve accuracy at the ex-
pense of additional analytical effort and numerical com-
putation time. The two integrals in (66) are then evalu-
ated analytically. The resulting expressions, too long to

present here, can be found in {27]. In order to proceed
with the computation of the bubble dynamics several
quantities appearing in the above boundary conditions
need to be evaluated at each time step. The bubble
volume presents no particular difficulty, while the unit
normal vector, the local surface curvature, and the local
tangential velocity at the bubble interface need further
development. In order to compute the curvature of the
bubble surface a local bubble surface three-dimensional
fit, f(z,y,2) = 0, is first computed. The unit normal
at a node and the local curvature can then be expressed
using Equations (5).

To obtain the total fluid velocity at any point on the
surface of the bubble, the tangential velocity, V;, must
be computed at each node in addition to the normal
velocity, Vo = 8¢/0n n. This is also done using a local
surface fit to the velocity potential, ¢; = h(z,y, =1 Tak-
ing the gradient of this function at the considered node,
and eliminating any normal component of velocity ap-
pearing in this gradient gives a good approximation for
the tangential velocity

Vi =nx (V¢ x n). (69)

With the problem initialized and the velocity poten-
tial known over the surface of the bubble, an updated
value of d¢/dn can be obtained by performing the inte-
grations outlined above, and solving the corresponding
matrix equation. The unsteady Bernoulli equation can
then be used to solve for D@/Dt, the total material
derivative of ¢,

D¢ _9¢

Pn—PL
— i — 2=_..—
D =t Vel

—gz+%|V¢|’. (70)

D¢/ Dt provides the total time variations of ¢ at any
node during its motion with the fluid. The second term
on the right hand side is the hydrostatic pressure and
is introduced to account for cases where the iniluence
of the gravitational acceleration is not negligible. Using
an appropriate time step, all values of ¢ on the bubble
surface can be updated using ¢ at the preceding time
step and D¢/Dt. In the results presented below the
time step was based on the ratio between the length of
the smaller panel side, Imia and the highest node veloc-
ity, Vmes- This choice limits the motion of any node to
a fraction of the smallest panel side. It has the great
advantage of constantly adapting the time step. by re-
fining it at the end of the collapse - where l,.;n becomes
very small and Vi, very large — and by increasing it
during the slow bubble size variation period. New co-
ordinate positions of the nodes are then obtained using
the position at the previous time step and the displace-

_ment,

94
dM = (5;“+Vg) dt. (11)
This time stepping procedure is repeated throughout
the bubble oscillation period, resulting in a shape his-
tory of the bubbles.




8 Presence of a Viscous Basic
Flow

Cavitation bubbles seldom grow and collapse in a qui-
escent fluid or in a uniform flow field. To the contrary,
cavities are most commonly observed in shear layers,
boundary layers and vortical structures. To study bub-
ble dynamics in a nonuniform flow field, let us consider
the case where the “basic flow” of velocity Vg is known
and satisfies the Navier Stokes equations:

av

8:0 +Vo-VVg = --w'o +vV?V, .

(72)

If the basic flow is potentxal the application of the Bound-

ary Element Method is straightforward and there is no
need for any additional assumptions.

In the presence of the oscillating bubbles, the veloc-
ity field is given by V which also satisfies the Navier
Stokes equation:
av

W+V vV =

Both V and Vg also satisfy the continuity equation.
We can now define bubble flow velocity and pressure
variables, V), and P,, as follows:

Vb=V =V, =P-F. (74)

If we assume that this bubble flow field (Vy, and R) is
potential, we can use a method similar to the one de-
scribed in the previous section to study the dynamics.
This assumption implies that, even though the basic
flow is allowed to interact with the bubble dynamics
and be modified by it, no new vorticity is allowed to be
generated by the bubble behavior. Within this restric-
tion, we have

vb = v¢br

—%VP +0V . (13)

Vig, =0. (75)

By subtracting (72) from (71), and accounting for (74)
we obtain

3¢5
at

This equation, once integrated, may be considered the
equivalent of the classical unsteady Bernoulli equation
in potential flow. As an illustration consider the case
where the basic flow field is that of a two-dimensional
Rankine vortex, Vo = Vjep, with

r

v —Vb +Vg-Vp+ —] Vux(Vx V). (76)

= s > a.:
Vo= Iy r 2 a
Ir
Vi=wr= 3rad r<a., () .

(3

where a. is the radius of the viscous core, I' the vortex :
circulation and V; the tangential velocity. In that case .

the Bernoulli equation can be replaced by:

9¢

°+ Ve I’+— = constant along radial direction.(78) .

Accounting for at-infinity conditions, the pressure at
the bubble wall, Py, is related to the pressure field in
the Rankine vortex, P, by:

| Vb l’] (19)
P p O 2 at bubble wall
The nondimensional basic flow pressure, Py, normalized

with the ambient pressure, P, is known and is given
by:

Po(F)=1-0Q [1 - % (0_1)1] :
ran=1- 23]

where lengths are normalized by Rm.., the maximum
radius the bubble would achieve in an infinite medium
if the pressure drops to the value on the vortex axis.
The swirl parameter (), defined as,

r26C|

(80)

characterizes the intensity of the rotation-generated pres-

sure drop relative to the ambient pressure. The pressure
on the vortex axis is (1 — Q) and goes to zero if 2 = 1.

9 Computational Results and Dis-

cussion

We present in this section some results obtained with
the Boundary Element Method code (3DynaFS$), and
compare them with results from the a. nptotic expan-
sion method. The accuracy of the numerical code was
evaluated by using simple test cases known in the liter-
ature such as the collapse of spherical and axisyminet-
ric bubbles. For spherical bubbles, comparison with
the Rayleigh-Plesset “exact” solution revealed that nu-
merical errors were less than 0.14 percent for a dis-
cretized bubble of 162 nodes. The error dropped to
0.05 percent for 252 nodes. The two discretizations -
162 nodes (320 triangular panels) or 252 nodes (500
panels) - are usually selected for most of our nonspher-
ical bubble dynamics runs. However, for the purpose
of studying multibubble interactions we were limited to
102 node bubbles (200 panels) due to the limitations
of our 32 MBytes MIPS RC3240 computer. For an 8-
bubble configuration the code uses about 30 MBytes
for 102-node bubbles. With this “coarse” discretization
the error is about 2 percent on the achieved maximum
radius, but is very small, 0.03 percent, on the bubble pe-
riod. (This can be seen in figure 9). Comparisons were
also made with studies of axisymmetric bubble collapse
available in the literature {8, 4], and have shown, for
the coarse discretization, differences with these stud-




ies on the bubble period of the order of 1 percent. Fi-
nally, comparison with actual test results of the complex
three-dimensional behavior of a large bubble collapse in
a gravity field near a cylinder shows very satisfactory
results, (15] (see Figure 8). The observed difference in
the period was shown to be related to the confinement
of the experimental bubble in a cylindrical container
[27].

Figure 9 compares the results obtained with the 3D
code with those given by the asymptotic approach. The
bubble cloud is subjected to a sudden pressure drop,
and for ease of interpretation, only symmetric cloud
configurations are considered. Results for one, two, four
and eight-bubble symmetric configurations are shown.
For the two-bubble case the bubble centers are sepa-
rated by a distance lo, and the initial gas pressure in
each bubble is such that the bubble would achieve a
maximum radius Rmas = Ry = 0.070p if isolated. The
four-bubble configuration considers similar bubbles cen-
tered on the corners of a square with sides of dimension
lo. Finally, the eight bubbles are located on the corners
of a cube of side ly. The figure presents the variations
with time of the distance between an initial bubble cen-
ter and both the point closest to (< 0), and the point
farthest (> 0) from the “cloud center”. These points
are selected because they lie along the direction of de-
velopment of the reentrant jet the farthest point be-
coming the tip of the jet which penetrates the bubble
"during the collapse. As we can sce [rom the figure, the
BEM method clearly shows that for bubbles oscillat-
ing in phase the period of oscillation increases with the
number of interacting bubbles. The maximum bubble
size along the jet axis is however not significantly mod-
ified. The jet advancement towards the “cloud center”
increases with the number of bubbles. This is seen by
the crossing of the r = 0 line by the upper curves on
the graph which becomes more and more pronounced
with an increase in the number of bubbles. This effect
is more pronounced for larger values of ¢ (see Figure
10).

Figure 9 also compares the results of the BEM code
with the asymptotic approach. It illustrates the lim-
itations of the incompressible asymptotic approach as
it stands now. When the number of bubbles increases
the method diverges towards the end of the collapse
and predicts either a much faster collapse than obtained
with the more accurate BEM method (N=2 and 4), or
an unexplained early bubble rebound (/N = 8). This be-
havior occurs earlier when either the number of bubbles
or the value of ¢ increases.

Figure 10 shows the influence of € on the bubble
dynamics for a 4-bubble configuration. Using the BEM
3D results enables one to study the influence of reducing
bubble inter-distance on the dynamics of each bubble.
Increasing the proximity between the bubbles, or in-
creasing the number of bubbles is seen to increase the
lengthening eflect on the bubble period, while enhanc-
ing the reentrant jet formation, as in the more clas-

sical case of bubble collapse near a solid wall. In all
cases, the reentrant jet formed is directed towards the
center of the bubble cloud, or here, the center of the
square. As expected, the asymptotic approach gives a
very good approximation at low values of ¢, but fairs
poorly for high values of ¢ (note that for ¢ = 0.5 the
bubbles touch at their maximum size). The above con-
clusions on the asymptotic approach have to be tem-
pered by the fact that all cases presented addressed rel-
atively intense bubble collapse (with a strong reentrant
jet formation). The relevant nondimensional param-
eter to characterize the collapse intensity is the ratio,
Pym., of the gas pressure to the outside pressure at max-
imum bubble size. This ratio is about 0.06 for the cases
shown above. For higher values of P,,, a smoother col-
lapse followed by a rebound occurs, and the asymptotic
approach fairs much better [23]. Figures 11 aud 12 il
lustrate further the three-dimensional behavior of the
bubble, using 198-node bubbles. Figure 11 shows two
cross-sectional views of the bubble shapes at various
times during the collapse for a strong interaction case
(€ = 0.498), for a 4-bubble configuration. The first view
shows bubble contours in the Z = 0 plane, plane of the
four bubble centers. In this plane all four hubbles cau
be seen, and the reentrant jet appears very wide giving
the bubble at the end of the collapse the appearance of
a “deflated balloon™. The second view is a diagonal cut
though the centers of two of the bubbles. In this view,
the reentrant jet appears inuch more pranounced. The

combination of the two views illustrates very clearly the
reentrant jet formation, its direction towards the center
of the square, and gives a qualitative idea about the
intensity of the collapse. In this case, due the geome-
try of the configuration, the jet has a two-dimensional
flat shape, rather than a conical axisymmetric shape.
This clearly provides one reason for the failure of the
asymptotic approach for this case, since the expansions
in that approach were stopped to an order (¢) which
does not allow the description of any azimuthal bubble
shape variations. Figure 12 presents a 3D view of the
bubbles towards the end of a relatively weak collapse
of a 4-tubble configuration (¢ = 0.185). Since the case
shown is symmetrical and all bubbles have the same
shape, this diagonal view can be interpreted as showing
the shape of the same bubble from different view angles.
The reentrant jet is here again seen to be wide, pointed,
and well advanced towards the other side of the bub-
ble. A complete history of the advancement of the jet
in the bubble can be deduced from figure 10. Figures 13
through 17 illustrate various important effects due to ei-
ther asymmetries in the bubble configuration, or due to
the presence of an underlying nonuniform flow. Figure
13 shows the case of an asymmetric five bubble config-
uration. All bubbles have the same initial radius and
internal pressure, and are initially spherical and located
in the same plane. The most visible effect observed is
that on the center bubble. Its growth is initially sim-
ilar to that of the other bubbles, but it ends up being




the least deformed. Later on, as the collapse phase ad-
vances with the development of a reentrant jet directed
towards the central bubble, this bubble appears to be
shielded by the rest of the cloud. Its period appears to
be at least double that of the other bubbles. Unfortu-
nately, the code cannot presently follow the dynamics
beyond this point since it fails following the touchdown
of the first reentrant jet on the other bubble side. Here,
this occurs before any significant progress of the collapse
of the central bubble is observed. The issue of con-
tinuing the computations beyond this point is clearly
important and is presently the subject of an ongoing
research at pynaFLow. Reference [30] gives results of
our first attempt towards solving this problem. Figure
14 shows a 4-bubble configuration where the bubbles
are centered on the corners of a square. All bubbles
were chosen so that they would behave identically if
in an infinite medium. However, a time delay between
the bubble oscillations was imposed. As a result, at
t = 0 the bubbles had relative initial sizes in the ra-
tios 2,1,3, 1 counter-clockwise starting from the bubble
centered at the origin. This results in a very asym-
metric behavior of the cloud configuration. The bubble
periods appear to be lengthened the most for the larger
bubbles at ¢t = 0. The “delayed” bubbles (the smaller at
t = 0) are prevented by the other bubbles from growing
significantly, and end up collapsing very early in their
history. These bubbles on the other hand significantly
influence the “earlier” ones by increasing at some point
the pressure drop these bubbles sense and then by pre-
venting them later on from collapsing. Since the code
presently breaks down before a significant collapse, we
car: only speculate that a very strong collapse of the
larger bubbles would ensue, because of the large pres-
sure produced by the collapse of the smaller bubbles.
This can be illustrated by observing the modification of
the imposed pressure drop by the behavior of an indi-
vidual bubble. As shown in figure 15, the bubble growth
initially reduces the effective pressure drop that would
be felt by a second bubble at the distance I, this trend
is later reversed, and is followed by a significant pressure
rise during the bubble collapse.

Figure 16 shows the three-dimensional behavior of
a bubble in a line vortex. The bubble is initially po-
sitioned at a distance of 2R,,. from the vortex axis
located at X = 2. The normalized core size is 4 in this
case. Figure 16a gives a view in the XOY plan of the
bubble at different instants. The bubble is seen spiral-
ing around the vortex axis { perpendicular to the fig-
ure) while approaching it. At the same time, due to the
presence of the pressure gradient, the bubble strongly
deforms and a reentrant jet is formed directed towards
the axis of the vortex. Figure 165 shows the same bub-
ble seen from the OX axis. Here some elongation is
observed along the axis of the vortex as well as a very
distinct side view of the re-entrant jet. This result is
totally contrary to the usually held belief that bubbles
constantly grow during their capture until they reach

the axis and elongate along it. Finally, Figure 17 shows
in the XOY plane perpendicular to the vortex axis the
motion of two particular points on the bubble, A and
B, initially along OY. Also shown is the motion of the
mid point, C. While C seems to follows a path similar
to the classical logarithmic spiral, A and B follow more
complicated paths, even moving away from the vortex
axis at some point in time.

Figures 18 and 19 , address the behavior of a bub-
ble near a solid wall in the presence of a nonuniform
flow field and as a result of a relative velocity between
the bubble and the flow. In the example shown a sim-
ple linear velocity profile is used to simulate the the
boundary layer flow near the wall in which the bubble
dynamics is considered. The basic flow velocity varies
from a value, V5., at a distance ry from the wall to
zero at the wall. The basic pressure is assumed constant
across the shear layer and is an input of the problem,
Pams, as is the initial gas pressure inside the bubble,
Pgo. The bubble center is located at a distance [, from
the wall, the ratio ry/lp being a key parameter char-
acterizing the bubble / wall interaction. Here, another
important parameter is the ratio between the charac-
teristic shear velocity and a characteristic bubble dy-
namics velocity [16], for instance x = Vypear/\/P/p.
Figure 18 shows an example of bubble growth and col-
lapse shape contours obtained with 3DynaFS$ near a
solid wall in the absence of shear. Figure 19 shows for
the same conditions the bubble collpase in the presence

of the nonuniform flow. A very significant effect of the
wall flow is seen on the development of the reentrant jet.
The jet is seen to be much weakened and delayed. Since
we have made these numerical observations in 1990 in
:[16], tests conducted by other researchers in the Large
iCavitation Channel appears to confirm experimentally
“at least some aspects of these observations.

_ Figure 20 shows the strong interaction between a
' growing and collapsing bubble and a vortex ring. Figure
20a shows a high speed movie sequence where the vortex
ring, the axis of which is on the left edge of the succes-
sive pictures, was generated using the impulsive motion
of a piston in a tank where a reduced ambient pressure
was imposed [45]. The bubble was spark-generated us-
ing submerged electrodes positionned where the initial
bubble center is sought. The figure shows that the bub-
ble grows initially almost spherically, then the shear
flow due to the vortex ring becomes very important
leading to a stretching and elongation of the bubble
along a stream line of the vortex flow. The bubble then
collapses in a very unusual manner producing a con-
striction along the vortex flow line, then decomposing
-into two bubble clouds. A set of various bubble / vortex
interaction intensities is presented in [45]. Figure 20b is
a direct numerical simulation of the experimental case
shown in figure 20a. The vortex ring flow was simu-
lated assuming a Rankine model and a viscous core size
as observed from other tests where microbubble motion
inthe vortex flow were visualized. Given such a crude




model of the vortex ring and given that the modification
of the vortex flow by the bubble dynamics neglected,
the similitude between the numerical simulation and the
experimental result is quite satisfactory and is able to
capture most of the feature of the bubble behavior. An
improved viscous model and the inclusion of the basic
flow modification will enable an even better correspon-
dence. The study of such an interaction is essential to
the understanding of the the interaction between mi-
crobubble and large organized viscous structures which
occur in boundary layers. These interactions are ex-
pected to be much more significant at full scale than
in the laboratory, particularily due to a significant in-
crease of the ratio between hydrodynamics scales and
bubble scales.

10 Conclusions

In this contribution the dynamics of the interaction
between bubbles and nearby boundaries (other bub-
bles or complex geometries) or nonuniform flows was
considered using an asymptotic method and a three-
dimensional Boundary Element model. Both approaches
enabled us to address aspects of the bubble dynam-
ics that have been ignored to date due to their math-
ematical difficulty. The asymptotic approach, valid for
the case of weak interactions, enables a better under-
standing of the general trends without recourse to an
extensive analysis of test cases, since it provides ana-
lytical expressions from parts of the solutions. Qn the
other hand direct 3D simulation have the advantage
of enabling the study of strong interactions where the
asymptotic expansion metod fails. Comparison of the
two methods provides a means of mutual validation of
the methods.

From the application of both methods the following
conclusions can be drawn from the study:

1. When compared to the dynamics of a single bub-
ble, significant modification of the bubble dynamics and
shape is observed for multibubble interaction. For iden-
tical bubbles acting in concert, an increase in the bubble
period is observed without significant modification of
the bubble maximum size when the number of bubbles
increase or when their separation distance decreases.

2. A shielding effect of the bubbles was observed
leading to an increased period and maximum size of
the bubbles in the center of the cloud.

3. While very large pressures are computed using
the asymptotic method with bubble clouds composed
of the same size bubbles, more moderate pressures are
obtained when the bubbles are not exactly in phase and
when large deformations are taken into account.

4. Bubble collapse near a solid wall and ia the pres-
ence of a nonuniform flow field is seen to be significantly
modified by the presence of this flow field. Reentrant
jet formation is seen to be delayed and weakened when
not eliminated.

IR

5. Bubble capture, growth and collapse in a line vor-
tex flow field is seen to involve significantly non spheri-
cal eflects which have been systematically neglected by
previous studies. For instance, noise generation at the
inception of tip vortex cavitation can probably be ex-
plained by the deformation, collapse and splitting of the
bubble while being captured.

6. The study of the interaction between bubbles and
large organized structures provides some hints about
the complexity of bubble dyanmics in real full scale flow
fields.

On-going areas of improvement of this study include
extension of the asymptotic approach to the case of a
compressible fluid and coupling of the multibubble ap-
proach to a two-phase medium model. The Boundary
Element Method approach is being improved to include
the full description of the reentrant jet piercing of the
bubble and its subsequent advancement in the fluid.
The 3D code 3DynaFsS is also being exercised on a
Cray Y-MP and implemented on a parallel Connection
Machine in order to significantly improve computation
time, and to allow practical consideration of a much
larger number of elements than at present.
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Figure la-c: Fig. 1b and Fig. lc show the geometry and flow field of the problem considerea. The trajectory of the
bubble center along the headform (of radius 10 cm) is indicated in Fig. 1b. The pressure (in Pa - y axis) and the
velocity (in ms—! - right y axis) of the basic flow along this streamline, are plotted against the non-dimensional Lime.
The free stream velocity is 1.15 ms~!. Fig. la shows the computed bubble contours for ¢ = 0.3, and time between
0.1T, to 27;. Bubble translation, rotation and re-entrant jet formation are clearly seen.
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Figure 2a-c: Bubble contours at various times for ¢ = 0.15,0.3 and 0.6. Here the initial bubble radius was kept
constant at 1 cm, while the initial standoff from the head form was varied to change . Increasing interaction is seen

with decreasing standoff.
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Figure 3a-c: Bubble contours at various times for ¢ = 0.15,0.3 and 0.6. Here the initial standoff distance lo was kept
constant at 3.333 em, while the initial radius was varied to change ¢. Increasing interaction is seen with increasing

initial bubble size.
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Figures 4-6: The interaction of the bubble with a line vortex is shown in these figures (see Section 5). Fig. 4 shows the
cross-section of the predicted bubble shape in the z — y plane (normal to the vortex axis). The vortex passes through
(z,y) = (0,0) along the z axis (normal to the plane of the paper). Fig. 5 indicates the motion of the points initially
farthest from and closest to the vortex axis in Fig. 4. Fig. 6 shows the cross-section of the predicted bubble shape in
s plane containing the vortex line and the center of the moving coordinate system. The vortex axis is at -20, on the
sbscissa.
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Figure 7: Influence of compressibility on the dynamics of a (FIRST MAXIMUM)  msec msec msec
6-bubble cloud. The figure shows R(0;, = 0,1) va. time for
bubble. The bubbles have an initial radius of 0.01 cm . ,
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the coordinate axes, 50 that ¢ = 0.07 . The bubbles are at parison between our three-dimension

equilibrium at ¢ = 0 when they are subjected to a sudden experimental results of gwtmr et ol

pressure drop. Here P = 2.0, and W = 679. The solid
line indicates the incompressible solution. Also plotted
is the corresponding curve for M =0.01 (small dashes),
M =0.03 (small dash-dot), and M =0.07 (dash-dot). The
strong effect of increasing compressibility can be seen.
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Figure 9: Motion of the bubble points farthest and clos- |
est to the cloud center versus time for 1,2,4 and 8-bubble
symmetric configurations. Comparison between 3D code
results and the asymptotic analysis. € = 0.07, Pyo/Poms =
283.
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Figure 11: Bubble contours during collapee of a 4-bubble
configuration. a) Cross sectional view in the plane Z = 0.
b) Cross sectional view in the plane Y = X. ¢ = 0.498
based on the maximum radius. Note the non-axisymmetric
shape of the jet during collapse.

Figure 13: Growtl: and collapse of 5 bubbles having the
same initial size and internal pressure. Influence of the
initial bubble geometry on dynamics. ¢ = 0.474 based on
the maximum radius. The center bubble is seen to have a
remarkably different behavior.
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Figure 12: Bubble Contours for the collapse of a 4-bubble
cloud for ¢ = 0.185. Since the case shown is symmetrical
and all bubbles have the same shape, this diagonal view
can be interpreted as showing the shape of the same bubble
from different view angles.

Figure 14: Growth and collapse of 4 identical bubbles ini-
tially symmetrically distributed but with different initial
radii (2,1,3,1 clockwise starting from origin). The figure
shows the influence of ‘phasing’ on the dynamics.
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Figure 15: Pressure at distance lo from a bubble following a sudden pressure drop. € = 0.3, P;o/Pams = 283.
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Figure 16-17: These figures show bubble vortex interaction
for @ = 0.948, a. = 4Rm,,, and Pyo/ Pems = 584. Figure
16 shows three dimensional bubble shapes at various times
during bubble capture in a vortex line. a) View in the
XOY plane. b) View in the XOZ plane. Figure 17 shows
the motion of the two bubble points initially on axis OY
and their mid-point vs. time. a) Vortex at X = 2. b)
Vortexat X = 1.
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Figure 18-19: These figures show the influence of a shear
flow in the growth and collapse of a bubble in the vicinity

of a wall.Pyg/Pams = 23. L/Rmes = 1.77 Fig. 18 shows a
case where and there is no shear flow. Fig. 19 shows the

same case for Viuear/VRayteign=0.042.

STRONG INTERACTION BETWEEN A
BUBBLE AND A VORTEX STRUCTURE
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Figure 20: Comparison of 3D BEM simulation and high speed movie sequence for the interaction between a bubble
and a vortex ring. The bubble is spark generated and the vortex ring piston generated.
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Dynamical Interactions in a Bubble Cloud

GEORGES L. CHAHINE,! RAMANI DURAISWAMI, A.N. LAKSHMINARASIMHA
DYNAFLOW, Inc.
10422 Mountain Quail Road
Silver Spring, MD 20901.

1 Introduction

Practical liquid flows contain many microscopic bubbles which
respond dynamically to the flow. These bubbles can grow explo-
sively and collapse, leading to cavitation and all its deleterious
efects [1,2]. These bubbles seldom occur singly, and their mu-
tual interaction is likely to play an important part in the fluid
dynamics. However, most previous studies consider only the
problem of single bubbles (includi only spherical or axisym-
metric deformations in their moddc:lsni or consider highly simpli-
fied models of multiple bubble interactions. To study cavitation
in practical flows one needs to be able to properly model these
interactions. Mathematically the problem is a difficult one, as
it is intrinsically three-dimensional, and involves multiple free
surfaces (with the associated non-linearity). Purely analytical
progress into the problem is clearly out of reach presently.

Our studies into this subject have proceeded along two differ-
et paths. In the first, [3-7,13,14], an asymptotic approach was
employed, using the assumption that the characteristic inter-
bubble distance was large compared to characteristic bubble
size. Solutions valid to the third order in this parameter were
obtained. Our more recent efforts have been devoted to the de-
veiopment of a completely three-dimensional boundary element
method capable of bandling multiple free-surfaces, and rigid
susfaces and particles. A computer program 3DynaFS) im-
plementing the method has been dev oped. It has been applied
to problems involving single bubbles in a variety of co.
tions, and more recently to problems involving several bubbles
and where the bubbles are in either a shear flow or in the flow
fieid of a Rankine vortex [8-12].

In this paper we present some preliminary results from nu-
merical experiments with the code 3DynaFS. We study a gum-
ber of flows involving a few bubbles, with particular emphasis
on the effects of various parameters an bubble growth and col-
lapse. Additionally the “exact” numerical solutions from the
boundary element technique are used to obtain a domain of
waiidity for the asymptotic studies.

2 Mathematical Formnlation

Consider an incompressible liquid in an infinite domain {this
iriction can be relaxed to allow rigid boundaries or other

Also Research Professar. Department of Mechanical Engineering. The
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free surfaces within the domain). Distributed in this liquid are
N bubbles, numbered 1,....N. Since we shall be copcerned with
cavitation bubbles where relatively e wall velocities are in-
volved, viscosity has no appreciable effect on the dynamics of
the bubble. Additionally we restrict the case to flows where
the Mach number is small enough so that the incompressibil-
ity assumption holds. (We are currently working to rehx t}m
assumption).These two assumptions are classical in cavitation
bubble studies, and with suitable initial conditions the flow is
irrotational. Following standard procedure we introduce a ve-
locity poteatial ¢, in terms of which the conservation laws in
the liquid may be stated in the form

V=0 (1)
and

%  Lver) = 2

P+p(0‘ +2|V¢|)— constant (2)

Here (2) is the Bernoulli integral of the momentum ‘equation.
We shall study the reaction of this system to a prescribed pres-
sure field at infinjty, P,(t). These equations are subject to
initial conditions for the potential, and boundary conditions on
the surfaces of the bubbles (and on any rigid surfaces in the
domain). At all boundaries we impose the condition that the
surface is a material surface and moves with the flow, so that
n-Vo=n-V,, 3)
where V, is the velocity of the surface, and n is the local unit
vector normal to the surface. In addition on the surface of the
bubble we must balance the normal stresses in the liquid and
the gas. The bubble is assumed to contain both non-condensible
gas and vapor. Within the bubble the pressure is assumed not
to vary spatially, and to be given by the sum of the partial
pressures of the noncondensible , Py, and that of the va-
por, P,. Vaporization of the liquid is assumed to occur at a fast
enough rate so that the vapor pressure can be assumed constant
throughout the simulation and equal to the equilibrium vapor
pressure at the liquid ambient temperature. Since time scales
associated with gas diffusion are much larger than those of ir-
terest, the amount of non-condensible gas inside the bubble:
is assumed to remain constant. This gas is assumed to satisfy
the polytropic relation, PV* = constant, where V is the bubble
volume, and k the polytropic index, with k_ = 1 representing
isothermal bebavior and k = C,/C. adiabatic behavior. With
these assumptions the condition of normal stress balance, at
anv time . on anv point X< on the surface, mav be stated as
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where P, is the liquid pressure at the bubble wall, F,, and V,
are the initial gas pressure and volume respectively, o is the
surface tension coefficient, C the local curvature of the bubble,
and V the instantaneous value of the bubble volume. Here P,
and Vo are known quantities at ¢ = 0. The curvature of the
bubble can be computed using the relation C = V- n. The
pressure at the bubble surfaces can be related to the potential
using Bernoulli’s equation, to give

8 1 Voy*
o5+ 31987 = Put)-Po= P () 407 ut9)

-On any moving rigid surfaces, we need an equation similar to (5)
relating the velocity of the surface to the pressure. Equations
(1-5), along with prescribed initial conditions, form a complete
system of equations for the variables ¢,xs, P, and determine
the location and geometry of the bubbles, and the pressure and
velocity in the domain. The two methods used to solve this
non-linear problem are described briefly in what follows. For
more complete descriptions see [5,8,9].

Boundary element solution

The boundary element method (BEM) uses Green'’s ideatity to
solve Laplace’s equation. If the velocity potential, ¢ (or its
normal derivative, 8¢/8n) is known on the boundaries of the
domain, and ¢ satisfies the Laplace equation, then ¢ can be
determined anywhere in the domain of the fluid by using the
identity:

d(y) 1 8 (1
/s{“an, x—y1 "5, (=

We first select x on the boundary to determine 8¢/8n (or ¢) on
the boundary, and then using the known values on the boundary
determine ¢ at the required point in the domain. Here ax =
is the eolid angle under which the point x sees the fluid, with
a = 4 if x is a point in the fluid

@ = 2 if x is a point on a smooth surface

e < 4 if x is a point at a sharp corner on the boundary.

The advantage of this representation is that it reduces the
dimension of the problem by one. If the point x is selected to
be on the boundary of the fluid domain (a bubble surfzcs or on
any other boundary), then a closed system of equations can be
obtained and used at each time step to solve for values of 9¢/6n
(or ). The points on the moving boundaries (bubble surfaces)
are advanced in a Lagrangian fashion using the calculated ve-
locities, while the potential at the subsequent times is obtained
by integrating (5).

To solve (6) numerically, we discretize the bubble surfaces as
well as other boundaries into panels. A local linear basis for ¢
and 8¢/8n is assumed over each pa:zsl. Integration is performed
over each panel, and the results sunmed up to complete the
integration over the complete boundiry. The initially spherical
bubble is discretized into a geodesic shape using flat, triangular
panels. Equation (6) then becomes a set of M linear equations
(M is the total number of discretization nodes) of index i of the

type:

)] ds, = axd(x).(6)

£ )t s @

i=l =1

where A,, and B, are elements of matrices which are the dis-
crete equivalent of the integral operators given in Equation (6).
Details of the calculation of these matrices, of the geometrical
quantities needed (normal, curvature, volume), the other phys-
ical variables (tangential and normal velocities, pressure)

)

the adaptive time integration scheme can be found in [8,9,11].
Results of the validation of this code may be found in {9,7,12].

If the potential at a point within the domain is needed, (6)
(or its discrete equivalent (7)) can be used. The known values of
¢ and 8¢/6n on the boundary are used to compute the integrals
on the left hand side. To calculate velocities at an interior paint
the potential in a neighborhood of the point is obtained and
local finite-differencing used, while the pressure is obtained via .
the Bernoulli equation (2).

Asymptotic solutions

We seek asymptotically valid solutions to Equations (1-5), under
the assumption that the characteristic size, rig, of the bubbles
is small compared with a characteristic inter- bubble distance
lo. The small parameter used to linearize the system is the ratio
between 740 and [y denoted ¢. The zero order approximation (¢ =
0) reduces to the case of a single bubble in an infinite medium.
In the absence of relative motion with respect to the surrounding
fluid, each of the bubbles reacts to the local pressure variations
spherically, as if isolated.

At higher orders of approximation (¢ # 0), mutual bub-
ble interactions and individual bubble motion and deformativn
come into play. These approximations are obtained by means
of the method of matched asymptotic expansions. The “outer
problem” is that obtained when the reference length is chosen
to be lp. This problem is associated with the macroscopic be-
bavior of the cloud, and each bubble appear in it only as the
summation of singularities of various orders. The “inner prob-
lem” is that obtained when the lengths are normalized by ryo.
The solution of this problem provide. the microscopic details of
the behavior of the cloud, i.e., in the vicinity of an individual
bubble center (B;). The presence of the other bubbles, all con-
sidered to be at infinity in the “inner problem,” is sensed only
by means of the matching condition with the “outer problem.”
The boundary conditions at infinity for the “inner problem” are
obtained, at each order of approximation by the asymptotic be-
havior of the outer solution in the vicinity of B;. Thus, if one
knows the behavior of all bubbles except B;, the motion, defor-
mation and pressure field due to this cavity can be determined
by solving linearised, non-dimensional versions of Equations (1-
S5). The non-dimensionalization yields the following parameters
¢, P,W,v,N. These are defined by

=T _ P=(0) =P
““ % P==3F
rndAP

ps v= ur.o\,f;. 8)

Here ¢ is a measure of the void fraction in the bubble cloud, P
is a ‘cavitation number,” W is a Weber number, v is the ratio of
the forcing frequency w and the natural frequency of a bubble
with radius ry, while Apis the characteristic pressure variation
associated with the forcing P,..

At the lowest order, ¢ = 0, each bubble, B;, behaves spher-
ically as if in an infinite medium and the time dependence of
its radius, aj(t), is given by the Rayleigh-Plesset equation,[1].
This first approximation of the whole flow field (a distribution
of sources or sinks representing all bubble oscillations) sets the
boundary conditions at infinity at the following order of approx-
imation. The same process is then repested for the successive
orders. One can show, (5,6}, that up to the order O(¢%), the
influence of the remaining bubbles on each bubble B,, can be
schematically replaced by the influence of & single equivalent
bubble centered at G; (see Figure 1). The growth rate and
position of this equivalent bubble are determined by the distri-
bution and the growth rate of the other cavities. In general,
this fictitious bubble equivalent to the “rest-of-the-cloud” and '




the corresponding “cloud center” and “equivalent bubble inten-
sity” are different for each bubble. If 4, is the angle between the
direction of the center, B,G,, and the direction of a field point
B, M, the equation of the surface of the axisymmetric bubble
B, can be written in the form:

R(8;,0,t) = ay(t) + eaj(t) + [a(t) + f3(t). cos ;] +
+€(a5(t) + £3(t). cos 8;; + g(t)Pa(cos 6,;)] + o), (9)

where P; is the Legendre polynomial of order 2, and argument
cos §;;, while the ¢ dependence is not seen till the order of the
included terms. A

The first component, a(t), is given by the Rayleigh-Plesset
equation, while the other components, al,, f: and g}, are given
by similar second order differential equations which can be writ-
ten in symbolic form as follows:

D) = 5 () Fthr i) Pulcos®). (10
Here D;(y;) represents a second order, non-linear, differential
operator in time, acting on the radius component y; (one of
ar, f.,94) of the bubble i; [/ is the initial distance between the
bubbles B; and B,; F(y{,....,yi-,) is known (it is a function of
the terms (yi ), dete ‘mined at the preceding orders); m indicates
the order of the spheiical harmonic; 6;; is the angle between the
direction B,B; connecting the bubble centers and the direction
of motion of bubble i toward the cloud center, B,; and n indi-
cates the order of approximation. The detailed expressions can
be found in [S]. The behavior of B; can then be computed by
integration of the obtained system of differential equations us-
ing a Runge-Kutta procedure. The behavior of the whole cloud
‘ thus obtained.

Earlier studies (3,5,6] have shown that collective bubble be-
_hlvxor.can have a dramatic effect on both bubble growth and
implosion. Specifically, bubble growth is inhibited by bubble in-
teractions, while bubble collapse is enhanced. This cumulative
gﬂ'ect, comes from the fact that the interaction reduces any driv-
ing pressure drop as a result of the other bubble growth, while
it increases the collapse driving pressure as a result of the other
bubble collapse. Due to the cumulative effects of the collapse of
all t!:e bubbles in the cloud, each bubble ends its collapse under
the influence of a pressure which is orders of magnitude higher
than that for an isolated bubble (see Figures 6 and 7).

3 Numerical Experiments

Comparison of the two methods

While the BEM code represents a significant advance in that it
allows us to simulate flows with very strong bubble interactions
in a relatively accurate way, it is computationally intensive com-
puefl to the asymptotic code. While the latter requires O(N)
floating point operations per time step, where NV is the number
of bubbles, the BEM code requires O(M?) operations per time
siep where M 15 the total number of nodes in the discretization.
It is thus a matter of some interest to determine the region in
the parameter space (see (8)) for which the asymptotic analysis
bolds. A complete map of the parameter space is a matter of
current study. Here a few prelimi-ary results are presented.
In all cases presented for comparison here the ratio ¢ is the
ratio of the initial radius of the bubble, and the minimum dis-
tance (at t = 0) between any two bubbles in the configuration.
The study was restricted to one particular form of the driving
pressure field-a drop in the pressure field at time ¢ = 0. Thus
the influence of the parameter v is not studied. Two values of

(\l

the initial pressure drop were chosen corresponding to values
for Pof 1.004 (a very large drop) and 2.508 (a relatively milder
drop). The number of bubbles varied from 2 to 8, while the value
of epsilon was also varied. The studies were performed for large
W (corresponding to large bubbles). Symmetric bubble config-
urations were chosen for ease of visualization, and efficiency in
computation. The bubbles were arranged respectively at the
edges of a line, a square, and a cube. In each case the bubble
oscillations caused “collapse” of the bubble in the direction to-
wards the center of the cloud. The data for the “radii® reported
are for points on a bubble which are closest to the cloud cen-
ter initially (the positive radii in Figure 2) and that which are
farthest from the cloud center (the negative radii).

As can be seen (Figure 2) the BEM code shows that the
time period of the oscillation of the bubbles increases with the
nurmber of interacting bubbles. The maximum bubble size along
the jet axis is however not much modified. The jet advancement
towards the cloud center increases with N. This is seen from
the fact that the upper curves in the graph cross the r = 0 axis
earlier as N increases. This effect is more pronounced as ¢ is in-
creased (Figure 3). The asymptotic code predicts substantially
the same curves for small N (Figure 2) and low ¢ (Figure 3),
but begins to diverge at higher values. The method predicts ei-
ther a much faster collapse for N = 2,4 or an unexpected early
rebound for N = 8 in Figure 2.

In the cases addressed in Figure 2 and 3 the collapse of the
bubbles was relatively intense. This may be seen that the value
of P =1.001, corresponds to a pressure drop of 240 times the
original. Thus it is unreasonable to expect good agreement from
the asymptotic analysis. To check if the method fares better in
case the pressure drop is milder, a case where P, is reduced to
approximately 40% of its original value was studied, correspond-
ing to P =2.508. Results from such a study are shown figures 4
and 5. The agreement between the asymptotic method and the

BEM code is seen to be quite good at low ¢. Figure 4 presents
the influence of changing N while figure § presents results for
a four bubble study where ¢ is varied from 0.05404 to 0.386.
(Note that the bubbles would touch for ¢ = 0.5, as the scaling
is based on the radius.)

The relative influence the dynamics of an individual bubble
has on its neighbors may be best understood by examining the
pressure at 3 point and compare it with its value in the absence
of the bubbles. Figures 6 and 7 show the pressure at the center
of the cloud, non- dimensionalized with respect to the maximum
pressure that would have been induced by & “Rayleigh-Plesset
bubble” (i.c. an isolated bubble at a distance l;/2 away. The
pressure predicted by the asymptotic analysis is seen to be much
higher during collapse. This high value is explained by the much
higher values of the velocity during collapse predicted by the
asymptotic analysis (see Figure 2,3,4) than by the BEM code.
Again the influence of increasing N or increasing ¢ is to make
the asymptotic analysis less accurate.

An explanation of why the predictions of the asymptotic
method are in error during the collapse phase is provided by
Figure 8, which shows the collapse of a 4 bubble cloud. Here
the value of ¢ = 0.4. Here two cross-sectional cuts of the cloud
are shown, the first being a top-view, while the second is a view
from the plane of the bubbles with the viewing angle perpen-
dicular to an edge. The fact that the bubbles are distributed in
a plane is clearly visible from the appearance of the jet, which
is seen to have a two-dimensional flat appearance, rather than
a conical axisymmetric shape. Since the asymptotic method, to
the order we have solved for (O(c?)), only allows for deforma-
tions expressible in terms of the first two Legendre modes, it
becomes inaccurate during the final stages of the collapse. The
error made in the pressure is much higher since it depends on
the time derivative of the shape (the velodity).

From these experiments we may conclude that, as expected,




the asymptotic method is good for relatively large inter bubble
separation, for a small pumber of bubbles, and when the bubble
collapse is weak.

Other Experiments

Here we report the results of some numerical experiments per-
formed with SDynaFS on some asymmetric bubble configura-
tions. The effects of phasing (i.e. the introduction of differences
in the temporal response), and the screening effect of the outer
bubbles in a cloud on their inner members are studied.

Figure 9 shows a 4-bubble configuration where the bubbles
are centered on the corners of a square. All bubbles were chosen
so that they would behave identically if in an infinite medium.
However, a time delay between the bubble oscillations was im-
posed. As a result, at ¢ = 0 the bubbles had relative initial
sizes in the ratios 2,1,3,1 counter- clockwise starting from the
bubble centered at the origin. A dramatic modification in the
behavior of the cloud is seen. The bubble periods appear to
be increased for the larger bubbles at ¢t = 0. The “delayed”
bubbles (the smaller ones at ¢ = 0) are prevented by the other
bubbles from growing too much, and end up collapsing very
early in their history. These bubbles on the other hand signifi-
cantly influence the “earlier” ones by increasing at some point
the pressure drop these bubbles sense and then by preventing
them later on from collapsing. Since the code presently breaks
down during the last stages of a vialent collapse, we can only
speculate that a very strong collapse of the larger bubbles would
ensue, because of the large pressure produced by the collapse of
the smaller bubbles. This can be illustrated by observing the
modification of the imposed pressure drop by the behavior of
an individual bubble. As shown in figure 8, the bubble growth
initially reduces the effective pressure drop that would be felt by
a second bubble at the distance Iy, this trend is later reversed,

and is followed by a significant pressure rise during the bubble
collapse.

Figure 10 shows the case of an asymmetric five bubble con-
figuration. All bubbles have the same initial radius and inter-
nal pressure, and are initially spherical and located in the same
plane. The most visible effect is observed on the center bub-
ble. Its growth is initially similar to that of the other bubbles,
but it ends up being the least deformed. Later on, as the col-
lapse phase advances with the development of a reentrant jet
directed towards the central bubble, this bubble appears to be
shielded by the rest of the cloud. Its period appears to be at
least double that of the other bubbles. Unfortunately, the code
cannot presently follow the dynamics beyond this point since
it fails following the touchdown of the first reentrant jet on the
other bubble side. Here, this occurs before much progress of the
collapse of the central bubble is observed. The issue of contin-
uing the computations beyond this point is clearly important
and is presently the subject of an ongoing research program at
DYNAFLOW. Figure 11 shows a similar computation for a 16
bubble cloud. Here due to memory limitations the discretiza-
tion is coarser. However the same qualitative features as the 5
bubble cloud can be observed.

4 Conclusion

In this contribution the dynamics of a multi-bubble system was
considered using an asymptotic method and a three-dimensional
Boundary Element model. While the asymptotic method is sim-
ple and satisfactory for relatively weak interactions and non-
violent bubble oscillations, the 3D numerical approach is more
involved computationally, but allows one to study both very
large deformations and very intense oscillations. For multibub-
ble interaction the 3D code shows significant modifications of

the bubbie dynamics and shape. For identical bubbles acting
in concert, an increase in the bubble period is observed without
significant modification of the bubble maximum sise when the
number of bubbles increase or when their separation distance
decreases. For violent interaction the asymptotic approach al-
lows one to follow the dynamics only partially during the col-
lapse. The pressures that it predicts during the collapse increase
tremendously at the “cloud center” with the number of bub-
bles. Comparisons with the BEM code results show that the
asymptotic approach can significantly overpredict the velocities
at the end of the collapse, which implies that the conclusions
on the pressures, while still correct, need to be tempered. Sim-
ilarly, other real fluid flow conditions, such as the presence in
the cloud of various bubble sises, the presence of a velocity or
pressure gradient, etc., moderate the conclusions drawn from
simplified symmetric models. These various effects can be con-
sidered and analyzed using the 3D code.

The phasing study indicates that the influence of compress-
ibility on the dynamics of multiple bubbles is likely to be sig-
nificant. Similarly the screening effect observed in the multiple
bubble simulations shows that the dynamics of a cloud of bub-
bles is very different from that of a single bubble.

We are presently attempting to repeat our asymptotic anal-
ysis by including compressibility. The results from the phasing
study indicate that the compressibility of the medium is likely
to play an important role, as identical bubbles would receive
pressure information at different times, and consequently could
have very different behavior. The large reduction of the sound
speed (from its value in pure water) in a bubbly medium makes
it important that such an effect be included.

While the BEM code 3DynaFS represents a significant ad-
vancement in our ability to computationally treat problems
hitherto impossible in an efficient way, its application to more
realistic problems requires much further work. In a current

study at DYNAFLOW we are attempting to take advantage the
inherent parallelizability of the BEM technique by implement-
ing it on a Connection Machine.

Acknowledgments

This study was supported by the Office of Naval Research, Con-
tract N00014-89-C-0025.

References

(1] Pissssr, M.S., aND ProsrsasTTl,
Rev. Fluid Mqch., 9, 145-185, 1977,

" Ann.

ics and Cavitats

A., “Bubble Dy

Near Boundaries.” Anaual

{3] Braxe, J. R, anD Gimson, D. C., “Cavitation Bubbl
Review Fluid Mechanics, 19, pp. 99-123, 1987.

{3} S:;m.- G.L., ‘Pr-ﬁnHF;‘ndsd Generated by the Cyllouichdh.p‘-tdCuitq.ion
." Proceedings, an Operating Problems of Pump Stations
odd Power Plants, mm&l. 1-12, 1962.

4] Cuawmez, G. L., “Experi J and Asymptotic Study of Non- spherical Bubble
Collapse.” Applied Scientific Rasearch, 38, 187-197, 1982.

[8] CHaupx. G.L.,“Cloud Cavitation: Theory.” 14th Sympesism on Nevel Hydvedy-
‘l:';n, Ans Ardor, Michigen, Netsonal Academy Press, Washingten, D.C.,165.195,

[6] Cuawive. G. L. avp Liu, K. L., *A Singular Perturbation Theory of the Growth of

& Bubble Clusier in & Super-beated Liquid,” J. Flvid Meck., 156, 257-274, 1965.
ics of the i ion of son-spherical cavities.” \o appear in
ics,” od. T. M.ou, SIAM. Phusdeiphia,

{T] Craums. G.L, “Dyn
“Mathematical approach
1991,

[8] CHampes, G.L. anp P T.0.. “Simulation of the Three- Dimensional Bebavior
of an Unsteady Large Bubble Near & Structwre,” in “A.1P. Conference P i
197: Drops and Bubbli ird 1 ional Colloquium.” ed. WanG, T.G., Amer-
ican [ustitate of Phyascs, New Vort, 188-199, 1969,

[9] Cuaunve. G. L.. Perous. T. O. anD TuckEn, C. B.. "Interaction Between an
Underwater Explosion Bubble and a Solid Submerged Body.” DYNAFLOW. Inc.
Technscal Report 39006-1, 1989.




Figure 3: Motion of the bubble points farthest from wud closest

00} Cuavam, GL.. "A Numasical Modal for Thoes-Disnensianal Babbis Dynsstios in
G—ﬁq“&rhqmc“umm

(t1] Cummss, G.L., “Nengpharical Bubbie ; Vartex® ASME

of the Dysamic Behavier of Bubbies is
Covitation snd Moliphase Flow Foram,

of Number of Gas Bub-
ey o kit by S

34 D Accersw, L. Bameay, C. K. Acoustical

Winegasnnew, L. “On the Collective
h"lu:‘."ne.lnhhzuﬁudc.@

ies of Bubble
72-76. 1963,

Figure I: Geometry of the bubble clo;.xd. The influence of the bubble cloud
s::.:b B(;‘) o & bubble B may be replaced by the action of a single bubble
at G

- i
i :
B s s o
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Figure 4: The effect of changing the number of bubbles. ¢ = 0.047,7 -
2.508, W = 6.75. This case is one where the collapes is less violent. Noi
the substantial improvement in the of the asymptotic analysis an-
the resuits from SDynaF'S. The solid line indicates the Rayleigh-Plesset solL
tion, the short dashes the BEM solution, while the long dashes the asymptot:
results.
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Figure 5: The effect of changing ¢. N = ¢, P =2.508, W =6.7 x10°. The
asymptotic results are indicated with loog dashes, and the BEM resuits
with short dashes. Tbe solid line indicates the Rayleigh-Plesset solution.
Asymptotic results for ¢ = 0.309 are not shown.
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Figure 6: Comparison of the pressure predicted by 3DynaFS and the
asymptotic analysis at the center of the bubble cloud for Figure 4. The
pressure is noo-dimensionalized by the max. pressure that would be felt in
the field of an isolated bubble at a distance ly/2 from the center. This scaling
was chosen to highlight any relationship between N and the increase in the
pressure. The agreement for N = 2 is good, but worsens for other cases for
reasons cited in the text. > ’




normalized pressure

normalized time

Figure 7: Comparison of the pressure predicted by 3DynaF$S and the asymp-
totic analysis for Figure 5. The results from the asymptotic analysis are shown
oaly for the ¢ = 0.054 and ¢ = 0.139 cases.
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Figure 8: Bubble contours during collapse of a ¢-bubble coafiguration.
a) Cross sectional view in the plane 2 = 0. b) Cross sectional view in
the plane Y = X. ¢ = 0.498 based on the maximum radius. Note the
noa-axisymmetric shape of the jet during collapee.

Figure 10: Growth and collapee of 5 bubbles having the same initial size
and internal pressure. Influence of the initial bubble geometry os dynamics.
¢ = 0.474 based on the maximum radius. The center bubble is seen 1o have
& remarkably different behavior. .

Figure 11: Contours of the collapse of a sixteen bubble cloud. The bubbles
are arranged initially on & regular grid in a plave. Again the central bubbies
show different bebavior than the outer bubbles. Contours from the growth
phase are on the left while those from the collapse pbase arc oa he nght. ‘
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Chapter 4

Dynamics of the Interaction of Non-Spherical
Cavities

Georges L. Chahine

Abstract

The presence of cavities in a liquid can have significant effects on its behavior and its flow
characteristics In practical flow situations, these effects cannot either be fully understood or
predicted without addressing complicated, but nonetheless fundamental phenomena associated with
the dynamics, interactions, and deformation of bubbles. The importance of these phenomena has long
been recognized, but has largely been neglected due to the difficulty of the associated mathematical
problems. In this contribution, bubble shape:ascillations in response to nonuniform fow fields and/or
due to their interaction with other bubbles are considered using both a fully three- dimensional
boundary integral method and a previously developed matched asymptotic expansions technique.
Results from both approaches in a few particular cases are compared, and the limits of application
of these methods for these cases is assessed.

4.1. Introduction

The understanding of bubble and cavity dynamics has preoccupied researchers and
engineers over the past several decades. Since the early work of Rayleigh [1] and
Besant [2], numerous papers and books have been devoted to the study of cavity
flows. However, due to the complexity of the general mathematical problem, most
approaches have been limited to the study of spherical bubbles, or elongated linearized
two-dimensional cavities. More recently, with the advent of new mathematical
and computational tools, increasing attention has been given to the study of more
practical cavity configurations: namely nonspherical bubbles and bubble clouds.
This contribution presents a recently developed three-dimensional nonlinear numerical
approach whose results will be compared with an earlier contribution, presently being
improved, which uses an asymptotic approach.

Since the late seventies considerable attention has been given to the study of
nonspherical bubble dynamics, but restricted to the axisymmetric cases in the vicinity
of a solid wall or a free surface [3,4,5,6]. All these studies were constrained to the
simplified case where external forces act in the same direction as the nearby rigid
or free boundary and took advantage of the axisymmetry of the resulting problem.
Deviations from this simplifying assumption were not considered, even though such
deviations can be expected to have significant influence on the results. Examples of
where this assumption fails include large cavity dynamics near complex geometries in
a gravity field, the dynamics of a cloud of bubbles, and bubble dynamics in a shear
or boundary layer. The study presented here dirfers from all previous investigations
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in that it considers both the fully three-dimensional dynamics of the bubble and that
it accounts for the strong interaction between bubbles in a “cloud” or multi-bubble
system.

The dynamics of bubble clouds have also recently received a lot of attention
(8,9,10], as they have been observed to produce dramatic deleterious effects (erosion,
noise, .. etc.), which cannot be explained with approaches based on single bubble
dynamics. All these studies but [5,9], have considered only the contribution of the
bubble volume change on the cloud dynamics, and have neglected bubble/fluid relative
motion and bubble deformation. Our own previous contributions considered these
effects in the limiting configurations where bubble size is small compared to inter-
bubble distance (small void fraction).

In the numerical method presented here this limitation is removed. A more
complete three-dimensional dynamic behavior of the bubbles including the fully
nonlinear boundary conditions of the problem is considered. The method, already well
tested for bubble dynamics in a quiescent fluid [11,12], is presently being extended to
the investigation of bubble dynamics in complex flow fields such as vortical, boundary
and shear flows [13,14]. Some of these results are shown below. The use of the method
for the study of multiple bubble dynamics is here illustrated and the results compared
with the results of the matched asymptotic expansion method.

In the following sections we present the general model used for the bubble
dynamics. The assumptions needed for the asymptotic approach are then presented,
and the steps needed to expand the various orders of approximation are outlined.
The following two sections are devoted to the numerical approach and describe its
implementation for nonspherical bubble dynamics in the presence or absence of an
underlying base flow. This is followed by a section presenting and discussing some
particular results using both the asymptotic and the numerical methods.

4.2. Bubble Dynamics Model

This study will consider cavitation bubbles where relatively large bubble wall velocities
are involved, and where, as a result, viscosity has no appreciable effect on the growth
and collapse of the bubbles. The study will also be restricted to the case where the
flow velocities remain small compared to the speed of sound in water, and as a result,
compressibility effects are neglected. This is valid until the last phases of bubble
collapse. The above two assumptions, classical in cavitation bubble dynamics studies,
result in a flow due to the bubble wall motion that is potential (velocity potential, ¢)
and which satisfies the Laplace equation,

(4.1) V26 = 0.

The solution must in addition satisfy initial conditions and boundary conditions
at infinity, at the bubble walls and at the boundaries of any nearby bodies.

At all moving or fixed surfaces (such as a bubble surface or a nearby boundary)
an identity between fluid velocities normal to the boundary and the normal velocity
of the boundary itself is to be satisfied. For instance, at the bubble-liquid interface,
the normal velocity of the moving bubble wall must equal the normal velocity of the
fluid. or,

(42) Ve -n= VS -n,

where n is the local unit vector normal to the bubble surface and Vs is the local
velocity vector of the moving surface.
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The bubble is assumed to contain noncondeasible gas as well as vapor of the
surrounding liquid. The pressure within the bubble at any given time is considered to
be the sum of the partial pressures of the noncondensible gases, 7, , and that of the
vapor, P,. Vaporization of the liquid is assumed to occur at a fast enough rate so that
the vapor pressure may be assumed to remain constant throughout the simulation
and equal to the equilibrium vapor pressure at the liquid ambient temperature. In
contrast, since time scales associated with gas diffusion are much larger, the amount
of noncoadensible gas inside the bubbles is assumed to remain constant and the
gas is assumed to satisfy the polytropic relation, PV* = constant, where V is the
bubble volume and & the polytropic constant, with k£ = 1 for isothermal behavior and
k = ¢, /¢, for adiabatic conditions.

The pressure in the liquid at the bubble surface, Py , is obtained at any time from
the following pressure balance equation:

(4.3) PL=P, + P,,(l;‘l)* ~ Co,

where P,, and V; are the initial gas pressure and volume respectively, ¢ is the surface
tension, C the local curvature of the bubble, and V the instantaneous value of the
bubble volume. Here P, and Vs are known quantities at ¢ = 0.

4.3. Asymptotic Theory for Multiple Bubble Dynamics

Let us consider a finite number of bubbles clustered in a cloud. If the characteristic
size, ryg, of the bubbles in the cloud is small compared with a characteristic inter-
bubble distance lg, then an asymptotic analysis of the bubble dynamics can be
developed using the ratio between ryg and ly as the small parameter, €. Thus, the first
order approximation (¢ = () consists in neglecting interactions between the bubbles.
In the absence of relative motion with respect to the surrounding fluid, each of the
individual bubbles reacts to the local pressure variations spherically, as if isolated.

At higher orders of approximation (¢ # 0), mutual bubble interactions and
individual bubble motion and deformation come into play. These approximations
are obtained by means of the method of matched asymptotic expansions. The “outer
problem” is that obtained when the reference length is chosen to be lp. This problem
is associated with the macroscopic behavior of the cloud, and each bubble appear in
it only as the summation of singularities of various orders. The “inner problem” is
that obtained when the lengths are normalized by ry. The solution of this problem
provides the microscopic details of the behavior of the cloud, i.e., in the vicinity of an
individual bubble center (B;). The presence of the other bubbles, all considered to be
at infinity in the “inner problem,” is sensed only by means of the matching coundition
with the “outer problem.” The boundary conditions at infinity for the “inner problem”
are obtained, at each order of approximation by the asymptotic behavior of the outer
solution in the vicinity of B;. Thus, if one knows the behavior of all bubbles except
B;, the motion, deformation and pressure field due to this cavity can be determined
by solving linearized forms of the equations presented in the previous section.

The following assumption was adopted for the numerical examples presented
below. The characteristic geometric scale of the cloud is small compared to the
outside driving pressure field scale. Therefore, to first approximation, the same driving
pressure is assumed to be felt at the same time by all bubbles in the cloud. Variations
of this pressure due to the position of each bubble are only seen at the higher orders.
In a more general case, the pressure felt by each bubble is dependent on the bubble
location and on the modification of the outside flow field by the presence of the
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bubble cloud. We are presently implementing such an approach which accounts for
the compressibility of the two-phase bubbly medium.

At the lowest order, ¢ = 0, each bubble (of index i) behaves spherically as if in an
infinite medium and the time dependence of its radius, aj(t), is given by the Rayleigh-
Plesset equation, [15]. If the compressibility of the medium is to be included, then
an equivalent equation such as in [7] can be used. This first approximation of the
whole flow field (a distribution of sources or sinks representing all bubble oscillations)
sets the boundary conditions at infinity at the following order of approximation. The
same process is then repeated for the successive orders. One can show, [9,16], that
up to the order O(e%), the influence of the remaining bubbles on each bubble B;,
can be schematically replaced by the influence of a single equivalent bubble centered
at G;. The growth rate and position of this equivalent bubble are determined by
the distribution and the growth rate of the other cavities. In general, this fictitious
bubble equivalent to the “rest-of-the-cloud” and the corresponding “cloud center” and
“equivalent bubble intensity” are different for each bubble. If 6;, is the angle between
the centers’ direction B;G, and the direction of a field point B; M, the equation of the
surface of the axisymmetric bubble B; can be written in the form:

R5.0.0=ah(®) + caf(t)+lai(t) + Fi(0).cosOy] +
(4.4) +  ay(t) + £i(t). cos b;j + gh(t)Pa(cos ;)] + o),

where P; is the Legendre polynormal of order 2, and argument cos 6;;.

The first component ao(t) is given by the Rayleigh-Plesset equation, while the
other components, a’,, fi and g, are given by similar second order differential
equations which can be written in symbolic form as follows:

(4.5) Da(vh) = Z (%) F(Yh, s Y1 Pem (cOS 07).
i\

Here D;(y.) represents a differential operator of the second order in time acting on
the radius component y;, ( one of aj,, f3, g%,) of the bubble i ; . ¥ is the initial distance
between the bubbles B; and B;; f‘(y‘},, ¥ _Disa known function of the terms
(vi), determined at the preceding orders; m is an integer indicating the order of the
spherical harmonic; ;; is the angle bet.ween the direction B; B; connecting the bubble
centers and the direction of motion of bubble i toward the cloud center, B,; and n
is an integer indicating the order of approximation. The detailed expressions can be
found in reference [9]

The behavior of B; can then be computed by integration of the obtained system
of differential equations using a multi-Runge-Kutta procedure. The bebavior of the
whole cloud is thus obtained.

Earlier studies [9,16,17] bave shown that collective bubble bebavior can have a
dramatic effect on both bubble growth and implosion. Specifically, bubble growth is
inhibited by bubble interactions, while bubble collapse is enhanced. This cumulative
effect comes from the fact that the interaction reduces any driving pressure drop as
a result of the other bubble growth. while it increases the collapse driving pressure
as a result of the other bubble collapse. Due to the cumulative effects of the collapse
of all the bubbles in the cloud. each bubble ends its collapse under the influence of
a pressure which is orders of magnitude higher than that for an isolated bubble (see
Figure 4.8 and corresponding discussion).
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4.4. B;)unda.ry Element Method for Three-Dimensional Bubble Dynamics

[n order to enable the simulation of bubble behavior in complex geometry and flow
configurations including the full non-linear boundary conditions, a three-dimensional
Boundary Element Method was developed. This method uses Green's identity to solve
Laplace’s equation. If the velocity potential, ¢ , or its normal derivative is known on
the fluid boundaries (points M), and ¢ satisfies the Laplace equation, then ¢ can be
determined anywhere in the domain of the fluid (field points P) using the identity:

. p a
(46) | -5 riim + o sty lde = amélo)

where a7 == Q is the solid angle under which P sees the fluid.
a =4, if P is a point in the fluid,
a =2, if P is a point on a smooth surface, and
a < 4, if P is a point at a sharp corner of the discretized surface.

The advantage of this integral representation is that it effectively reduces the
dimension of the problem by one. If the field point P is selected to be on the boundary
of the fluid domain (a bubble surface or on any other boundary), then a closed system
of equations can be obtained and used at each timestep to solve for values of 3¢/dn
(or ¢) assuming that all values of ¢ (or d6/dn) are known at the preceding step.

To solve Equation (4.6) numerically, it is necessary to discretize the bubble into
panels, perform the integration over each panel, and then sum up the contributions
to complete the integration over the entire bubble surface. To do this, the initially
spherical bubble is discretized into a geodesic shape using flat, triangula. panels. After
discretizing the surface, Equation (4.6) becomes a set of N equations (V is the number
of discretization nodes) of index i of the type:

(47) S (e 28 = X8y - 4 - o,

i=1 j

where A;; and B;; are elements of matrices which are the discrete equivalent of the
integrals given in Equation (4.6).

To evaluate the integrals in (4.6) over any particular panel, a linear variation of
the potential and its normal derivative over the panel is assumed. In this manner,
both ¢ and 9¢/0n are continuous over the bubble surface, ar.d are expressed as a
function of the values at the three nodes which delimit a particular panel. Obviously
higher order expansions are conceivable, and would probably improve accuracy at
the expense of additional analytical ffort and numerical ~omputation time. The two
integrals in (4.6) are then evaluated analytically. The resulting expressions, too long
to present here, can be found in [18].

In order to proceed with the computation of the bubble dynamics several
quantities appearing in the above boundary conditions need to be evaluated at each
time step. The bubble volume presents no particular difficulty, while the unit normal
vector, the local surface curvature, and the local tangential velocity at the bubble
interface need further development. In order to compute the curvature of the bubble
surface a local bubble surface three-dimensional fit, f(z,y,z) = 0, is first computed.
The unit normal at a node can then be expressed as:

21
(4.8) n= :!.:l vE]

trh
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with the appropriate sign chosen to insure that the normal is always directed towards
the fluid. The local curvature is then computed using

(4.9; C=V-n.

To obtain the total fluid velocity at any point on the surface of the bubble, the
tangential velocity, V¢ , must be computed at each node in addition to the normal
velocity, Vn = 3¢/0n n . This is also done using a local surface fit to the velocity
potential, ¢; = h(z, y, z). Taking the gradient of this function at the considered node,
and eliminating any normal component of velocity appearing in this gradient gives a
good approximation for the tangential velocity

(4.10) Vi =n x (V¢ x n).

With the problem initialized and the velocity potential known over the surface
of the bubble, an updated value of 8¢/9n can be obtained by performing the
integrations outlined above, and solving the corresponding matrix equation. The
unsteady Bernoulli equation can then be used to solve for D¢/Dt, the total material

derivative of ¢,

D¢ 86 ._ ., P.—Pr 1,c. 0
(4.11) Dt—at+|V¢|- p -gz+2|V¢| i

D¢ /Dt provides the total time variations of ¢ at any node during its motion with
the fluid. The second term on the right hand side is the hydrostatic pressure and is
introduced to account for cases where the influence of the gravitational acceleration
is not negligible.

Using an appropriate timestep, all values of ¢ on the bubble surface can be updated
using ¢ at the preceding time step and D¢/Dt. In the results presented below the
timestep was based on the ratio between the length of the smaller panel side, lpnin
and the highest node velocity, V,,-. This choice limits the motion of any node to a
fraction of the smallest pauel side. It has the great advantage of constantly adapting
the timestep, by refining it at the end of the collapse — where I, becomes very
small and Vinq- very large - and by increasing it during the slow bubble size variation
period. New coordinate positions of the nodes are then obtained using the position at
the previous time step and the displacement,

(4.12) dM = (0¢/0n.n + Vy)dt.

This time stepping procedure is repeated throughout the bubble oscillation period,
resulting in a shape history of the bubbles.

4.5. Presence of a Basic Flow
Cavitation bubbles seldom grow and collapse in a quiescent fluid or in a uniform flow
field. To the contrary, cavities are most commonly observed in shear layers, boundary
layers and vortical structures. To study bubble dynamics in a nonuniform flow field,
let us consider the case where the “basic flow” of velocity V is known and satisfies
the Navier Stokes equations ! :

aVy

1 2
(4.13) '-5‘——-!-"0 -VVg = —;VPO+VV'VO .

TIf the basic flow is potential the application of the Boundary Element Method is straightforward
and there is no need for any additional assumptions
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In the presence of the oscillating bubbles, the velocity field is given by V which also
satisfies the Navier Stokes equation:

av 1 2
(4.14) "b-t-+V-VV--;VP+vVV.
Both V and Vg also satisfy the continuity equation. We can now define bubble

fdow velocity and pressure variables, V, and £}, as follows:
(4.15) Vp=V -V, P,=P - b,

If we assume that this bubble flow field (Vi and P) is potential, we can use a
method similar to the one described in the previous section to study the dynamics.
This assumption implies that, even though the basic flow is allowed to interact with
the bubble dynamics and be modified by it, no new vorticity is allowed to be generated
by the bubble behavior. Within this restriction, we have

(4.16) Vi = Vés, V4 = 0.

By subtracting (4.14) from (4.13), and accounting for (4.16) we obtain
0 1

(4.17) V[7$+§|Vb l2+V0-Vb+-?-]=VbX(VxVo).

This equation, once integrated, may be considered the equivalent of the classical

unsteady Bernoulli equation in potential flow.
As an illustration consider the case where the basic flow field is that of a two-

dimensional Rankine vortex, Vg = Vj.ey, with

r
Vo = 5;;3 r2ac
Ir
(4.18) Vo =swr= 2702-, r<a,

where a. is the radius of the viscous core, [ the vortex circulation and Vj the tangential
velocity. In that case the Bernoulli equation can be replaced by:

(4.19) i) + 1 [ V2| +§- = constant along radial directions.
8 2' b p

Accounting for at-infinity conditions, the pressure at the bubble wall, P, is related
to the pressure field in the Rankine vortex, Fy, by:

4.20 = ]
(4.20) 4 4 gt 2 at bubble wall

The nondimensional basic flow pressure, Py, normalized with the ambient pressure,
Po, is known and is given by:

Po(F)=1-0 {1 - ';'(-::)’] ,  F<La,

Po(F)=1- g(%)’; F>a.,

LG YT Ce

.:ﬂ-‘f
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where lengths are normalized by Rpn,,, the maximum radius the bubble would achieve
in an infinite medium if the pressure drops to the value on the vortex axis. The swirl

parameter (2, defined as,

(4.21) = -—-( ),

21ra,_.
characterizes the intensity of the rotation-generated pressure drop relative to the
ambient pressure. The pressure on the vortex axis is (1 — ) and goes to zero if

Q=1.

4.6. Computational Results and Discussion

We present in this section some results obtained with the Boundary Element Method
code (3DynaFS), and compare them with results from the asymptotic expansion
method. The accuracy of the numerical code was evaluated by using simple test cases
known in the literature such as the collapse of spherical and axisymmetric bubbles.
For spherical bubbles, comparison with the Rayleigh-Plesset “exact” solution revealed
that numerical errors were less than 0.14 percent for a discretized bubble of 162 nodes.
The error dropped to 0.05 percent for 252 nodes. The two discretizations — 162 nodes
(320 triangular panels) or 252 nodes (500 panels) - are usually selected for most of our
nonspherical bubble dynamics runs. However, for the purpose of studying multibubble
interactions we were limited to 102 node bubbles (200 panels) due to the limitations on
our 32 Mbytes MIPS RS3240 computer. For an 8-bubble configuration the code uses
about 30 Mbytes for 102-node bubbles. With this “coarse” discretization the error
is about 2 percent on the achieved maximum radius, but is very small, 0.03 percent,
on the bubble period. (This can be seen in figure 4.2). Comparisons were also made
with studies of axisymmetric bubble collapse available in the literature {4,6], and have
shown, for the coarse discretization, differences with these studies on the bubble period
of the order of 1 percent . Finally, comparison with actual test resuits of the complex
three-dimensional behavior of a large bubble collapse in a gravity field near a cylinder
shows very satisfactory resuits, [12] (see Figure 4.1). The observed difference in the
period was shown to be related to the confinement of the experimental bubble in a
cylindrical container [18].

Figure 4.2 compares the results obtained with the 3D code with those given by
the asymptotic approach. The bubble cloud is subjected to a sudden pressure drop,
and for ease of interpretation, only symmetric cloud configurations are considered.
Results for one, two, four and eight-bubble symmetric configurations are shown. For
the two-bubble case the bubble centers are separated by a distance ly, and the initial
gas pressure in each bubble is such that the bubble would achieve a maximum radius
Rmaz = Ry = 0.07lq if isolated. The four-bubble configuration considers similar
bubbles centered on the corners of a square with sides of dimension ly. Finally, the
eight bubbles are located on the corners of a cube of side l;. The figure presents the .
variations with time of the distance between an initial bubble center and both the
point closest to (< 0), and the point farthest (> 0) from the “cloud center”. These
points are selected because they lie along the direction of development of the reentrant
jet the farthest point becoming the tip of the jet which penetraws the bubble during
the collapse.

As we can see from the figure, the BEM method clearly shows that for bubbles
oscillating in phase the period of oscillation increases with the number of interacting
bubbles. The maximum bubble size along the jet axis is however not significantly
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Fig. 4.1. Large bubble collapse near a cylinder. Comparison between the three-dimensional
BEM code results [18] and ezperimental results of reference 19.

modified. The jet advancement towards the “cloud center” increases with the number
of bubbles. This is seen by the crossing of the » = 0 line by the upper curves on the
graph which becomes more and more pronounced with an increase in the number of
bubbles. This effect is more pronounced for larger values of ¢ (see Figure 4.3).

Figure 4.2 also compares the resuits of the BEM code with the asymptotic
approach. It illustrates the limitations of the incompressible asymptotic approach
as it stands now. When the number of bubbles increases the method diverges towards
the end of the collapse and predicts either a much faster collapse than obtained with
the more accurate BEM method (N=2 and 4), or an unexplained early bubble rebound
(N=8). This behavior occurs eatlier when either the number of bubbles or the value
of € increases.

Figure 4.3 shows the influence of ¢ on the bubble dynamics for a 4-bubble
configuration. Using the BEM 3D results enables one to study the influence of reducing
bubble inter-distance on the dynamics of each bubble. Increasing the proximity
between the bubbles, or increasing the number of bubbles is seen to increase the
lengthening effect on the bubble period, while enhancing the reentrant jet formation,
as in the more classical case of bubble collapse near a solid wall. In all cases, the
reentrant jet formed is directed towards the center of the bubble cloud, or here,
the center of the square. As expected, the asymptotic approach gives a very good
approximation at low values of ¢, but fairs poorly for high values of ¢ (note that for
€ = 0.5 the bubbles touch at their maximum size).

The above conclusions on the asymptotic approach have to be tempered by the
fact that all cases presented addressed relatively intense bubble collapse (with a strong
reentrant jet formation). The relevant nondimensional parameter to characterize the
collapse intensity is the ratio, ?,,,., of the gas pressure to the outside pressure at
maximum bubble size. This ratio is about 0.06 for the cases shown above. For higher
values of P;m a smoother collapse followed by a rebound occurs, and the asymptotic
approach fairs much better [5].

Figures 4.4 and 4.5 illustrate further the three-dimensional behavior of the bubble,
using 198-node bubbles. Figure 4.4 shows two cross-sectional views of the bubble
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Fig. 4.2. Motion of the bubble points farthest and closest to the “cloud center” versus time
for 1,2,4 and 8-bubble symmetric configurations. Comparison between 3D code results and

the asymptotic code results. € = 0.07, Py [Pams = 283.
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Fig. 4.3. Motion of the bubble points farthest from and closest to the “cloud center” versus
time for a 4-bubble symmetric configuration. Comparison between 3DynaFS code results and
the asymptotic code results. Influence of bubble proximity or ¢ = Rmaz/lo, Pyo/Pems = 283.
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Fig. 4.4. Bubble contours during collapse of a {-budble configuration. a) Cross sectional view
in the plane Z=0. b) Cross sectional view in the plane Y=X. ¢ = 0.498, Py /Pams = 283.

shapes at various times during the collapse for a strong interaction case (¢ = 0.498),
for a 4-bubble configuration. The first view shows bubble contours in the Z = 0
plane, plane of the four bubble centers. In this plane all four bubbles can be seen,
and the reentrant jet appears very wide giving the bubble at the end of the collapse
the appearance of a “deflated balloon”. The second view is a diagonal cut though
the centers of two of the bubbles. In this view, the reentrant jet appears much more
pronounced. The combination of the two views illustrates very clearly the reentrant jet
formation, its direction towards the center of the square, and gives a qualitative idea
about the intensity of the collapse. In this case, due the geometry of the configuration,
the jet has a two-dimensional flat shape, rather than a conical axisymmetric shape.
This clearly provides one reason for the failure of the asymptotic approach for this
case, since the expansions in that approach were stopped to an order (&) which does
not allow the description of any azimuthal bubble shape variations.

Figure 4.5 presents a 3D view of the bubbles towards the end of a relatively weak
collapse of a 4-bubble configuration (¢ = 0.185). Since the case shown is symmetrical
and all bubbles have the same shape, this diagonal view can be interpreted as showing
the shape of the same bubble from different view angles. The reentrant jet is here
again seen to be wide, pointed, and well advanced towards the other side of the bubble.
A complete history of the advancement of the jet in the bubble can be deduced from
figure 4.3.

Figures 4.6 through 4.10 illustrate various important effects due to either
asymmetries in the bubble configuration, or due to the presence of an underlying
nonuniform flow. Figure 4.6 shows the case of an asymmetric five bubble configuration.
All bubbles have the same initial radius and internal pressure, and are initially
soherical and located in the same plane. The most visible effect observed is that
«.. the center bubble. Its growth is initially similar to that of the other bubbles, but it
ends up being the least deformed. Later on, as the collapse phase advances with the
development of a reentrant jet directed towards the central bubble, this bubble appears
to be shielded by the rest of the cloud. Its period appears to be at least double that
of the other bubbles. Unfortunately, the code cannot presently follow the dynamics
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Fig. 4.5. Three-dimensional view of bubble shape at t = 1.8 during collapse of a 4-bubble
configuration. € = 0.184, Pgo/Pams = 283.

beyond this point since it fails following the touchdown of the first reentrant jet on
the other bubble side. Here, this occurs before any significant progress of the collapse
of the central bubble is observed. The issue of continuing the computations beyond
this point is clearly important and is presently the subject of an ongoing research at
DYNAFLOW.

Figure 4.7 shows a 4-bubble configuration where the bubbles are centered on the
corners of a square. All bubbles were chosen so that they would behave identically
if in an infinite medium. However, a time delay between the bubble oscillations was
imposed. As aresult, at ¢ = 0 the bubbles had relative initial sizes in the ratios 2,1, 3,1
counter-clockwise starting from the bubble centered at the origin. This results in a
very asymmetric behavior of the cloud configuration. The bubble periods appear
to be lengthened the most for the larger bubbles at ¢ = 0. The “delayed” bubbles
(the smaller at ¢ = 0) are prevented by the other bubbles from growing significantly,
and end up collapsing very early in their history. These bubbles on the other hand
significantly influence the “earlier” ones by increasing at some point the pressure drop
these bubbles sense and then by preventing them later on from collapsing. Since the
code presently breaks down before a significant collapse, we can only speculate that a
very strong collapse of the larger bubbles would ensue, because of the large pressure
produced by the collapse of the smaller bubbles. This can be illustrated by observing
the modification of the imposed pressure drop by the behavior of an individual bubble.
As shown in figure 4.8, the bubble growth initially reduces the effective pressure drop
that would be felt by a second bubble at the distance Iy, this trend is later reversed,
and is followed by a significant pressure rise during the bubble collapse.

Figure 4.9 shows the three-dimensional behavior of a bubble in a line vortex. The
bubble is initially positioned at a distance of 2Rm,, from the vortex axis located at

. = 2. The normalized core size is 4 in this case. Figure 4.9a gives a view in the
XOY plan of the bubble at different instants. The bubble is seen spiraling around the
vortex axis ( perpendicular to the figure) while approaching it. At the same time, due
to the presence of the pressure gradient, the bubble strongly deforms and a reentrant
Jet is formed directed towards the axis of the vortex.
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Fig. 4.6. Growth and collapse of 5 bubbles having the same initial size and internal pressure.
Influence of the initial bubble geometry distribution on dynamics. € = 0.474, Py /Pams = 283.
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Fig. 4.7. Gro.wth and collapse of 4 identical bubbles initially :ymmétricdly distributed but
with different initial radii (2,1,3,1 clockwise starting from origin). Influence of phasing on
dynamics. Pyo[Pams = 283.




64 Georges L. Chahine

%% o0 %0 7500 1500 200 2500
Normalized Time
Fig. 4.8. Pressure at a distance b from a bubble following a sudden pressure drop. ¢ =
Rm“/lo = 0.3, P’olpgmb = 283.

Figure 4.95 shows the same bubble seen from the OX axis. Here some elongation
is observed along the axis of the vortex as well as a very distinct side view of the
re-entrant jet. This result is totally contrary to the usually held belief that bubbles
constantly grow during their capture until they reach the axis and elongate along it.

Finally, Figure 4.10 shows in the XOY plane perpendicular to the vorte - axis the
motion of two particular points on the bubble, A and B, initially along C Y. Also
shown is the motion of the mid point, C. While C seems to follows a path similar to
the classical logarithmic spiral, A and B follow more complicated paths, even moving
away from the vortex axis at some point in time.

4.7. Conclusions

In this contribution the dynamics of a multi-bubble system was considered using
an asymptotic method and a three-dimensional Boundary Element model. The
emphasis in the presentation was placed on the 3D BEM results since they are
both more accurate and constitute a more recent development in our efforts. While
the asymptotic method is simple and satisfactory for relatively weak interactions
and non-violent bubble oscillations, the 3D numerical approach is more involved
computationally, but allows one to study both very large deformations and very intense
oscillations. For multibubble interaction the 3D code shows significant modifications of
the bubble dynamics and shape. For identical bubbles acting in concert, an increase in
the bubble period is observed without significant modification of the bubble maximum
size when the number of bubbles increase or when their separation distance decreases.
For violent interaction the asymptotic approach allows one to follow the dynamics only
partially during the collapse. The pressures that it predicts during the collapse increase
tremendously at the “cloud center” with the number of bubbles. Comparisons with the
BEM code results show that the asymptotic approach can significantly overpredicts
the velocities at the end of the collapse, which implies that the conclusions on the
pressures, while still correct, need to be tempered. Similarly, other real fluid flow
conditions, such as the presence in the cloud of various bubble sizes, the presence of
a velocity or pressure gradient, ..etc. moderate the conclusions drawn from simplified
symmetric models. These various effects can be considered and analyzed using the 3D
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Fig. 4.9. Three-dimensional bubble shapes at various times during bubble capture in a vortez
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Fig. 4.10. Motion of two bubble points initially on azis OY and their mid point versus time.
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code. In this communication, an example of these effects related to the problem
of bubble capture, growth and collapse in a line vortex flow field was presented.
Nonspherical effects, commonly neglected, were shown to significantly modify our
understanding of the phenomenon. As a result, noise generation at the inception of
tip vortex cavitation can now be explained by the deformation, collapse and splitting
of the bubble while being captured.

On-going areas of improvement of this study include extension of the asymptotic
approach to the case of a compressible fluid and coupling of the multibubble approach
to a two-phase medium model. The Boundary Element Method approach is being
improved to include the full description of the reentrant jet piercing of the bubble and
its subsequent advancement in the fluid. The 3D code is also being implemented on a
parallel Connection Machine in order to significantly improve computation time, and
to allow practical consideration of a much larger number of elements than at present.
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